Most accessed

  • Published in last 1 year
  • In last 2 years
  • In last 3 years
  • All

Please wait a minute...
  • Select all
    |
  • CHEN Zhifeng, JIA Li, YIN Liaofei, DANG Chao, REN Honglei, ZHANG Zhiqiang
    Journal of Thermal Science. 2025, 34(1): 1-23. https://doi.org/10.1007/s11630-024-2076-z
    Li-ion battery is an essential component and energy storage unit for the evolution of electric vehicles and energy storage technology in the future. Therefore, in order to cope with the temperature sensitivity of Li-ion battery and maintain Li-ion battery safe operation, it is of great necessary to adopt an appropriate battery thermal management system (BTMS). In this paper, the current main BTM strategies and research hotspots were discussed from two aspects: small-scale battery module and large-scale electrochemical energy storage power station (EESPS). The practical application situation, advantages and disadvantages, and the future development trend of each heat dissipation method (air, liquid, PCM, heat pipe, hybrid cooling) were described in detail. Among them, the air cooling and liquid cooling were reviewed in-depth based on the engineering application. The PCM, heat pipe and hybrid cooling were reviewed extensively based on the latest explorations. The research provides a comprehensive understanding for the BTMS in all scales.
  • Engineering thermodynamics
    JI Zhishi, ZHANG Hanqing, WANG Pei
    Journal of Thermal Science. 2025, 34(2): 337-351. https://doi.org/10.1007/s11630-024-2075-0
    To achieve low-carbon economic operation of hydrogen-doped integrated energy systems while mitigating the stochastic impact of new energy outputs on the system, the coordinated operation mode of hydrogen-doped gas turbines and electrolyzers is focused on, as well as a hybrid energy storage scheme involving both hydrogen and heat storage and an optimized scheduling model for integrated energy systems encompassing electricity-hydrogen-heat-cooling conversions is established. A model predictive control strategy based on deep learning prediction and feedback is proposed, and the effectiveness and superiority of the proposed strategy are demonstrated using error penalty coefficients. Moreover, the introduction of hydrogen energy exchange and ladder carbon trading is shown to effectively guide the low-carbon economic operation of hydrogen-doped integrated energy systems across multiple typical scenarios. A sensitivity analysis is conducted based on this framework, revealing that increases in the hydrogen doping ratio of turbines and the carbon base price led to higher system operation costs but effectively reduce carbon emissions.
  • DU Shen, HE Yaling, LI Dong, LIU Zhanbin, LI Mengjie
    Journal of Thermal Science. 2024, 33(5): 1607-1617. https://doi.org/10.1007/s11630-024-2019-8
    Direct pore-scale and volume-averaging numerical simulations are two methods for investigating the performance of porous volumetric solar receivers. To clarify the difference in the prediction of heat transfer processes, a direct comparison between these two methods was conducted at both steady state and transient state. The numerical models were established based on X-ray computed tomography scans and a local thermal non-equilibrium model, respectively. The empirical parameters, which are indispensable to the volume-averaging simulation, were determined by Monte Carlo ray tracing and direct pore-scale numerical simulations. The predicted outlet air temperature of the receiver by the volume-averaging simulation method corresponded satisfactorily to that in the direct pore-scale simulation. The largest discrepancies were observed when the receiver’s working temperature was elevated, with differences of 5.5% and 3.68% for the steady state and transient state simulations, respectively. However, the volume-averaging method is incapable of capturing the local temperature information of the air and porous skeleton. It underestimates the inlet temperature of the receiver, leading to an overestimation of the receiver’s thermal efficiency, with the largest difference being 6.51%. The comparison results show that the volume-averaging model is a good approximation to the pore-scale model when the empirical parameters are carefully selected.
  • ZHANG Jun, ZHANG Li, JIN Guang, LIN Chenyang, CUCE Erdem, GUO Shaopeng
    Journal of Thermal Science. 2024, 33(6): 2117-2137. https://doi.org/10.1007/s11630-024-2003-3
    The development of azobenzene photoisomerization materials marks a pivotal advancement in solar-thermal conversion technologies. Their properties and performance, explored through comprehensive characterization, are vital for further progress. Despite extensive research in this area, a detailed summary of characterization methods for azobenzene materials remains largely unexplored. This review addresses this gap by detailing structural and performance characterization techniques. It provides an in-depth overview of various experimental methods, highlighting their objectives, operational mechanics, and practical applications. This detailed review sheds light on the complex relationship between the materials’ structure and their performance. Moreover, the review presents a critical analysis of these methods, assessing their strengths and limitations. By doing so, it highlights the revolutionary potential of azobenzene materials in the realm of solar energy conversion and underscores their significance in fostering sustainable energy solutions.
  • PAN Lisheng, SHI Weixiu, SUN Yin, SUN Yiwei, WEI Xiaolin
    Journal of Thermal Science. 2024, 33(5): 1630-1641. https://doi.org/10.1007/s11630-024-1977-1
    The supercritical CO2 Brayton cycle has potential to be used in electricity generation occasions with its advantages of high efficiency and compact structure. Focusing on a so-called self-condensing COtranscritical power cycle, a model was established and four different layouts of heat recuperation process were analyzed, a without-recuperation cycle, a post-recuperation cycle, a pre-recuperation cycle and a re-recuperation cycle. The results showed that the internal normal cycle’s share of the whole cycle increases with increasing the cooling pressure and decreasing the final cooled temperature. Heat load in the supercritical heater decreases with increasing the cooling pressure. From perspective of performance, the re-recuperation cycle and the pre-recuperation cycle have similar thermal efficiency which is much higher than other two layouts. Both thermal efficiency and net power output have a maximum value with the cooling pressure, except in the condition with the final cooled temperature of 31°C. Considering both the complexity and the economy, the pre-recuperation cycle is more applicable than the other options. Under 35°C of the final cooled temperature, the thermal efficiency of the pre-recuperation cycle reaches the peak 0.34 with the cooling pressure of 8.4 MPa and the maximum net power output is 2355.24 kW at 8.2 MPa of the cooling pressure.
  • LUO Qiao, LUO Lei, DU Wei, YAN Han, WANG Songtao, ZHOU Xun
    Journal of Thermal Science. 2024, 33(6): 2005-2018. https://doi.org/10.1007/s11630-024-2042-9
    A tandem blade configuration is a significant flow control method that delays the onset of flow separation. This study numerically investigates the effects of diffusion factor and percentage pitch on the flow structure of tandem blades. Diffusion factors vary from 0.328 to 0.484. Percentage pitches change from 0.80 to 0.92. Results show that the loss coefficient increases with diffusion factor and decreases with percentage pitch. There is a hub-corner stall of the forward blade in all cases. Gap flow determines the rear blade corner separation. Varying the percentage pitch and diffusion factor changes the momentum distribution of the gap flow. Corner separation of the rear blade is inhibited as low-momentum gap fluids are involved in the passage vortex along with the hub-corner stall of the forward blade. Increasing diffusion factor causes a change in incidence at the leading edge of the rear blade, resulting in a variation at the corner separation of the rear blade. A tandem blade is compared with the reference outlet vane. The performance of the tandem blade is superior to that of the reference outlet vane in all incidences, with a 26.35% reduction in the loss coefficient and a 7.89% enhancement in the pressurization at the designed incidence. Tandem blades stall at positive incidence because of the hub-corner stall of the forward blade. The intensity of the gap flow increases with incidence, preventing corner separation of the rear blade at positive incidences.
  • Heat and mass transfer
    WANG Yifan, SUN Xiaoxia, KANG Huifang, MA Xinglong, ZHANG Tao
    Journal of Thermal Science. 2025, 34(2): 465-497. https://doi.org/10.1007/s11630-025-2086-5
    As an important and effective indicator of contact heat transfer, thermal contact resistance is a widespread phenomenon in engineering. It can directly affect product reliability, full-load performance, power consumption and even life cycle in energy, aerospace, electronic packaging, cryogenic refrigeration, etc. Therefore, enhancing the interface heat transfer and suppressing thermal contact resistance have become increasingly important. Against this background, this paper seeks to elaborate on conceptions of thermal contact resistance and the ways to reduce it. After reviewing the existing methods of measuring thermal contact resistance and characterizing the interface morphology, we highlight the theoretical underpinnings of thermal contact resistance, including the two-dimensional mathematic characteristics of the contact interface and the theoretical and empirical models for quantifying it. Three categories of influencing factors, i.e., thermal, geometrical and mechanical states, are then presented. Based on the macroscopic formation mechanism, the paper summarizes the existing methods for suppressing thermal contact resistance, with close attention paid to polymer composite thermal interfacial materials and metal interfacial materials filled with high thermal conductivity filler. In light of the findings, this review provides five promising directions for future research on thermal contact resistance. It suggests that the failure modes and service life of interface materials are essential to apply such technologies to suppress thermal contact resistance in practice. This review will be a guide for future research in thermal contact resistance and for the widespread use of composite interface materials.
  • GUAN Yiheng, BECKER Sid, ZHAO Dan
    Journal of Thermal Science. 2025, 34(3): 689-706. https://doi.org/10.1007/s11630-025-2103-8
    Recent research and development on ramjet and supersonic combustion ramjet (scramjet) engines is concerned with producing greater thrust, higher speed, or lower emission. This is most likely driven by the fact that supersonic/hypersonic propulsion systems have a broad range of applications in military sectors. The performances of such supersonic/hypersonic propulsion systems depend on a series of physical and thermodynamic parameters, such as the fuel types, flight conditions, geometries and sizes of the engines, engine inlet pressure/velocity. As a propulsion system, a stable and efficient combustion is desirable. However, self-excited large-amplitude combustion oscillations (also known as combustion instabilities) have been observed in liquid- and solid-propellant ramjet and scramjet engines, which may be due to acoustic resonance between inlet and nozzle, vortex kinematics (large coherent structures), and acoustic-convective wave coupling mechanisms due to combustion. Such intensified pressure oscillations are undesirable, since they can lead to violent structural vibration, and overheating. How to enhance and predict the engines’ stability behaviors is another challenge for engine manufacturers. The present work surveys the research and development in ramjet combustion and combustion instabilities in ramjet engines. Typical active and passive controls of ramjet combustion instabilities are then reviewed. To support this review, a case study of combustion instability in solid-fueled ramjet is provided. The popular mode decomposition algorithms such as DMD (dynamic mode decomposition) and POD (proper orthogonal decomposition) are discussed and applied to shed lights on the ramjet combustion instability in the present case study.
  • ZHANG Xirui, SHAO Qihan, LIU Jian, XI Wenxiong, LIU Chaoyang, SUNDEN Bengt
    Journal of Thermal Science. 2024, 33(6): 2274-2298. https://doi.org/10.1007/s11630-024-2039-4
    With the advantages of low cost, excellent ability of heat and mass transfer and easy accessibility to the supercritical point, supercritical CO2 has been applied in many engineering devices recently. Because of the sharply-varying thermophysical properties near the supercritical point, heat transfer and flow behavior of supercritical CO2 in tubes become complex and have received a lot of research attention. The main purpose of this paper is to summarize the findings of the published works related to flow phenomena and heat transfer characteristics of supercritical CO2. Firstly, influence parameters related to boundary conditions of supercritical CO2 flowing in a smooth tube are introduced. Secondly, commonly-used turbulence and mathematic models dealing with internal flows of supercritical CO2 are summarized. Then, research works on geometric effects of design parameters, shapes and configurations are introduced. The practical applications of supercritical CO2 in recent years are presented. Finally, developments and future challenges of supercritical CO2 in tubes are analyzed and summarized. This paper provides basic knowledge of heat transfer and fluid flow mechanisms and related practical applications of supercritical CO2 in tubes.
  • Engineering thermodynamics
    WANG Tianze, XU Jinliang, ZHENG Haonan, QI Jianhui
    Journal of Thermal Science. 2025, 34(2): 352-373. https://doi.org/10.1007/s11630-025-2091-8
    The supercritical carbon dioxide (sCO2) cycle can be powered by traditional as well as clean energy. To help users obtain more accurate results than the literatures with pre-set compressor efficiency, we proposed a complete model to establish a link between the performance, sizes of compressors and parameters such as power WC, inlet temperature Tin, inlet pressure Pin and pressure ratio ɛ. Characteristic sizes of compressors lc, profile loss Yp and clearance loss Ycl are all proportional to powers of WC with powers of 0.5, –0.075 and –0.5 to 0 respectively; the scaling laws are constant in the range of capacities from 20 MW to 200 MW. The compressor isentropic efficiency ηtt grows as the WC increases, and the curves become gentle. Compressor efficiency improves over the full power range when the speed is changed from standard speed to the optimal speed; the ηtt curves turn soft as the n increase. As the Pin and Tin approach the critical point, the ηtt increase. Compressor efficiency follows a parabolic curve as the ɛ increases, this parabolic distribution results from the tradeoff between the change in losses and the pressure distribution of blades. The ηtt versus Pin, Tin and ɛ relations are similar at various capacities because of insignificant changes in the distribution of losses. Compressor efficiency maps facilitate the estimation of system performance, while scaling law for irreversible losses and characteristic lengths, along with constant criterion analyses, aid in comprehending the characteristics of compressors across various capacities.
  • LIU Feng, ZHOU Jiyuan, GONG Yutong, LV Yanlong, SUI Jun
    Journal of Thermal Science. 2025, 34(3): 850-879. https://doi.org/10.1007/s11630-025-2100-y
    The absorption cycle is a promising technology for harnessing low-temperature heat, playing a crucial role in achieving the objectives of carbon peaking and carbon neutrality. As a significant element in distributed energy systems, the absorption cycle can utilize various types of low-grade heat to fulfill cooling, heating, and electrical energy demands. Therefore, it can be employed in diverse settings to unleash its substantial energy-saving potential. However, the widespread adoption of the absorption cycle is limited to specific scenarios. Hence, further efforts are needed to enhance its technological maturity, gain societal acceptance, and expand its application scope. Focusing on the utilization of different low-grade heat, this paper provides an overview of significant advancements in the application research of various absorption cycles, such as the absorption refrigeration cycle, absorption heat pump, absorption heat transformer, and the absorption power cycle. According to current research, absorption cycles play a critical role in energy conservation and reducing carbon dioxide emissions. They can be applied to waste heat recovery, heating, drying, energy storage, seawater desalination, refrigeration, dehumidification, and power generation, leading to substantial economic benefits. The paper also outlines the primary challenges in the current application of the absorption cycle and discusses its future development direction. Ultimately, this paper serves as a reference for the application research of the absorption cycle and aims to maximize its potential in achieving global carbon neutrality.
  • YANG Mingyang, CAI Ruikai, ZHUGE Weilin, YANG Bijie, ZHANG Yangjun
    Journal of Thermal Science. 2024, 33(6): 2032-2046. https://doi.org/10.1007/s11630-024-2027-8
    Supercritical carbon dioxide (SCO2) centrifugal compressor is a key component of a closed Brayton cycle system based on SCO2. A comprehensive understanding of the loss mechanism within the compressor is vital for its optimized design. However, the physical properties of SCO2 are highly nonlinear near the critical point, and the internal flow of the compressor is closely related to its properties, which inevitably influences the generation of aerodynamic losses within the compressor. This paper presents a comprehensive investigation of the compressor’s loss mechanism with an experimentally validated numerical method. The real gas model of CO2 embodied in the Reynolds-Averaged Navier-Stokes (RANS) model was used for the study. Firstly, the numerical simulation method was validated against the experimental results of Sandia SCO2 compressor. Secondly, performance and loss distribution of the compressor were compared among three fluids including SCO2, ideal CO2 (ICO2) and ideal air (IAir). The results showed that the performance of SCO2 was comparable to IAir under low flow coefficient, however markedly inferior to the other two fluids at near choke condition. Loss distribution among the three fluids was distinctive. In the impeller, SCO2 was the most inefficient, followed by ICO2 and IAir. The discrepancies were magnified as the flow coefficient increased. This is due to a stronger Blade-to-Blade pressure gradient that intensifies boundary layer accumulation on walls of the shroud/hub. Furthermore, owing to the reduced sonic speed of SCO2, a shock wave appears earlier at the throat region and SCO2 encounters more intense boundary layer separation.
  • CHI Weikai, YANG Qichao, CHEN Xiaonan, LIU Guangbin, ZHAO Yuanyang, LI Liansheng
    Journal of Thermal Science. 2024, 33(5): 1618-1629. https://doi.org/10.1007/s11630-024-1963-7
    In this paper, a novel NH3/CO2 ejector-cascade refrigeration system with regenerator is proposed, which can recycle the waste heat at the outlet of the compressor. After establishing the mathematical model of the system, the theoretical energy and exergy analysis are carried out and compared with the conventional cascade refrigeration system. It is concluded that compared with the conventional cascade refrigeration system, the novel ejector-cascade refrigeration system with regenerator has the advantages of less power consumption of the compressor, less component exergy destruction, high system performance, and is more suitable for working at a lower temperature. Under the working conditions studied in this paper, compared with the conventional cascade refrigeration system, the COP of the novel ejector-cascade refrigeration system with regenerator is increased by 9.58%; the exergy efficiency is increased by 9.50%, and the optimal evaporation temperature is about –45°C.
  • YAN Suying, LIU Yiran, AO Ci, ZHAO Xiaoyan, ZHANG Na, ZHANG Ruiying, AHMADI Mohammad Hossein
    Journal of Thermal Science. 2024, 33(5): 1672-1687. https://doi.org/10.1007/s11630-024-1971-7
    The heat transfer efficiency of a thermal energy storage unit (TESU) can be improved by the addition of novel longitudinal fins. A series of TESUs are analyzed using the finite volume method (FVM) to determine the effect of fin angle on the heat transfer performance. As the fin angle increases, the TES rate first increases, then decreases, reaching a maximum rate at 60°, where the melting time is less by 30.9%, 28.58%, 21.99%, 9.02%, and 18.1% than at 0°, 15°, 30°, 45°, and 80°, respectively. In addition, it is found that the melting time of the phase change material is significantly greater at the bottom of the TESU. The time percentage of this stage decreases as the fin angle increases through these percentages by 7%, 14%, 23%, 33%, and 20%, respectively. Further, the response surface methodology (RSM) is applied to optimize the longitudinal fin by minimizing the total melting time. The analysis concludes that a fin angle of 58.68° reduces the complete melting time of the stearic acid by 44% below the time at 0°. These findings fill a gap in knowledge of the effect on melting performance of the design angle of longitudinal fins and provide a reference for the design of horizontally placed longitudinal finned thermal energy storage units.
  • LIN Chunjing, LAI Zhenxing, BAI Guangli, MA Biao, WEI Zhen, QI Chuang, LIU Shiqiang
    Journal of Thermal Science. 2024, 33(5): 1809-1825. https://doi.org/10.1007/s11630-024-1999-8
    Lithium-ion batteries (LIBs) undergo various degradation phenomena such as material decomposition, structural change and uneven lithium ion distribution during long-term cycles, which would affect their performance and safety. In order to improve the performance of the LIBs during their life cycle, preload force is preset when the batteries are assembled. Different preload forces will in turn affect the cycle life and heat generation of the battery. In order to address this issue, this work carries out charge/discharge cycle tests on a NCM811 battery under different preload forces. Isothermal calorimetry tests are performed to investigate the battery heat generation under different states of health (SOHs) and preload forces. Based on the test results, an empirical prediction model for heat generation power as a function of SOH is established. Results show that when the preload force is 5 N·m, the battery capacity decreases in the slowest rate and the average heat generation power is the lowest. Changes in peaks of the incremental capacity curve can be used to characterize the loss of lithium at the electrode, which in turn characterizes the change of heat generation power of the battery. The average heat generation power is mainly affected by the SOH, going through a period of trough with the decrease of the SOH and continuing to increase after crossing the critical point. In general, these findings emphasize the relationship between preload force, SOH and heat generation power, which is helpful for the judgment of optimal preload to improve the efficiency of LIBs.
  • LIU Tantao, GAO Limin, LI Ruiyu
    Journal of Thermal Science. 2024, 33(5): 1867-1882. https://doi.org/10.1007/s11630-024-2035-8
    For complex flows in compressors containing flow separations and adverse pressure gradients, the numerical simulation results based on Reynolds-averaged Navier-Stokes (RANS) models often deviate from experimental measurements more or less. To improve the prediction accuracy and reduce the difference between the RANS prediction results and experimental measurements, an experimental data-driven flow field prediction method based on deep learning and 1 regularization is proposed and applied to a compressor cascade flow field. The inlet boundary conditions and turbulence model parameters are calibrated to obtain the high-fidelity flow fields. The Saplart-Allmaras and SST turbulence models are used independently for mutual validation. The contributions of key modified parameters are also analyzed via sensitivity analysis. The results show that the prediction error can be reduced by nearly 70% based on the proposed algorithm. The flow fields predicted by the two calibrated turbulence models are almost the same and nearly independent of the turbulence models. The corrections of the inlet boundary conditions reduce the error in the first half of the chord. The turbulence model calibrations fix the overprediction of flow separation on the suction surface near the tail edge.
  • Engineering thermodynamics
    FU Shen, TANG Xin, LIU Penghui, LI Guiqiang
    Journal of Thermal Science. 2025, 34(2): 389-399. https://doi.org/10.1007/s11630-025-2094-5
    Thermally regenerative electrochemical cycle (TREC) is a novel and effective heat-to-electricity technology for harvesting low-grade heat. Currently, reported TREC analyses have been based on the Stirling cycle of ideal infinite heat source and infinite time for heat transfer. However, this will lead to inaccuracy when the scenario deviates from the ideal case. In this study, a systematic thermodynamic analysis on TREC is performed to address this problem. Based on different heat transfer situations, the description of thermodynamic processes and the corresponding mathematical models are established. At the same time, the TREC system, with the solar collector as the high-temperature heat source and the environment as the low-temperature heat source, is employed as a case. And the study delved into discrepancies arising from incongruences between the practical operational process and the traditional ideal analytical methodologies, along with an investigation of the different thermal environment impact on system performance. The findings suggest that the finite analysis method should be used when the actual operating time of the system is shorter than the desired equilibrium period. On the contrary, the use of the infinite analysis method, in this case, produces an error, the magnitude of which is directly related to the operating time, whereas when the time reaches 80% of the equilibrium time the error can be controlled to less than 2%. The influence of the heat source on the operating phase of the system is mainly in the temperature equilibrium and the rate of temperature equilibrium. This effect is proportional to the thermal capacitance and is also positively related to the system performance. Therefore, to improve system performance, it is recommended that a high-temperature heat source with a high ratio of thermal capacitance to system thermal capacitance should be selected and that the response time should slightly exceed the system equilibrium duration.
  • Engineering thermodynamics
    YUAN Shaoke, LI Peijing, JIAO Fan, LI Yimin, QIN Yuanlong, HAN Dongjiang, LIU Qibin
    Journal of Thermal Science. 2025, 34(2): 374-388. https://doi.org/10.1007/s11630-025-2017-5
    With a broad range of application prospects, hydrogen fuel cell technology is regarded as a clean and efficient energy conversion technology. Nevertheless, challenges exist in terms of the safe storage and transportation of hydrogen. One proposed solution to this problem is the utilization of methanol on-line steam reforming technology for hydrogen production. In this paper, an integrated system for in-situ steam reforming of fuel coupled with proton exchange membrane fuel cells (PEMFC) power generation is proposed, and sensitivity analysis and exergy sensitivity analysis are conducted. Through the gradual utilization of waste heat and the integration of the system, fuel consumption is reduced and the power generation efficiency of the system is improved. Under the design operating conditions, the power generation efficiency and exergy efficiency of the system are achieved at 44.59% and 39.70%, respectively. This study presents a proven method for the efficient integration of fuel thermochemical conversion for hydrogen production with fuel cells for power generation, highlighting the advantages of complementary utilization of methanol steam reforming and PEMFC.
  • LIN Yongjie, ZHANG Cancan, WU Yuting, ZHANG Yi, LU Yuanwei
    Journal of Thermal Science. 2025, 34(1): 24-33. https://doi.org/10.1007/s11630-024-2087-9
    Numerical simulations of the flow and heat transfer characteristics of four shell-and-tube molten salt electric heaters with different perforation rates was conducted. Shell-and-tube electric heaters have the same geometry and tube arrangement, and all of them use single segmental baffles, but there exist four different baffle openings (φ), i.e., 0%, 2.52%, 4.06%, and 6.31%. The results indicated that the reasonable baffle opening could significantly reduce the shell-side pressure drop, effectively decreasing the shell-side flow dead zone area. They can eliminate the local high-temperature phenomenon on the surface of electric heating tubes, but the heat transfer coefficient is slightly decreased. All perforated schemes significantly reduce shell-side pressure drop compared to the baseline solution without open holes. In particular, the φ=6.31% scheme exhibits the optimal performance among all the schemes, with a maximum reduction of up to 50.50% in shell-side pressure drop relative to the unopened holes scheme. The heat transfer coefficient is the highest for φ=0%, exhibiting a range of 5.26% to 5.73%, 5.14% to 5.99%, and 7.31% to 8.54% higher than φ=2.52%, 4.06%, and 6.31%, respectively, within the calculated range. The composite index h/(Δp)1/3 was higher for all open-hole solutions than that for the unopened-hole solution. The best overall performance was for φ=6.31%, which improved the composite index by 15.29% to 17.18% over the unopened-hole solution.
  • WANG Wei, ZHANG Jianyuan, GU Yi, LUO Qing, ZHOU Guiqing, LI Ang, LU Guozhong, MA Tingshan, ZHAO Yuanzhu, CHANG Yiming, XUE Zhaonan
    Journal of Thermal Science. 2024, 33(6): 2138-2150. https://doi.org/10.1007/s11630-024-2015-z
    With countries proposing the goal of carbon neutrality, the clean transformation of energy structure has become a hot and trendy issue internationally. Renewable energy generation will account for the main proportion, but it also leads to the problem of unstable electricity supply. At present, large-scale energy storage technology is not yet mature. Improving the flexibility of coal-fired power plants to suppress the instability of renewable energy generation is a feasible path. Thermal energy storage is a feasible technology to improve the flexibility of coal-fired power plants. This article provides a review of the research on the flexibility transformation of coal-fired power plants based on heat storage technology, mainly including medium to low-temperature heat storage based on hot water tanks and high-temperature heat storage based on molten salt. The current technical difficulties are summarized, and future development prospects are presented. The combination of the thermal energy storage system and coal-fired power generation system is the foundation, and the control of the inclined temperature layer and the selection and development of molten salt are key issues. The authors hope that the research in this article can provide a reference for the flexibility transformation research of coal-fired power plants, and promote the application of heat storage foundation in specific coal-fired power plant transformation projects.
  • ZHOU Wenwu, WANG Kechen, ZHANG Tianluan, WEN Xin, PENG Di, LIU Yingzheng
    Journal of Thermal Science. 2024, 33(6): 2089-2096. https://doi.org/10.1007/s11630-024-2048-3
    The present study proposed a shaped sweeping jet (SJ) that possesses the merits of both SJ and shaped hole, which demonstrates significantly improved cooling effectiveness and anti-deposition performance. Compared to a classical 777 shaped hole, the shaped SJ exhibits a maximum enhancement of 70% in cooling effectiveness and a maximum reduction of 28% in particle deposition height, respectively. Owing to the periodic oscillation of coolant jet and higher streamwise jet momentum, the shaped SJ can provide much wider coolant coverage and therefore sweep the adhesive particle away from the wall. This study is the first attempt to reconcile the performance of film cooling and particle anti-deposition simultaneously, which offers a promising design concept for future engine cooling.
  • Aerothermodynamics
    GAO Hongyu, WANG Yutian, XU Renjie, XU Qingzong
    Journal of Thermal Science. 2025, 34(2): 626-638. https://doi.org/10.1007/s11630-025-2104-7
    Investigating the interaction between purge flow and main flow in gas turbines is crucial for optimizing thermal management, and enhancing aerodynamic efficiency. Measuring the high-speed rotating rotor poses challenges; however, employing the pre-swirl method to model rotational effect can facilitate experimental measurements. This study evaluates the validity of the pre-swirl method for modeling rotational effects. Numerical simulations are conducted under both stationary conditions, with seven swirl ratios, and rotational conditions. The investigation focuses on the underlying mechanisms of pre-swirl and rotation. Pre-swirl and rotation impart circumferential velocity to the purge flow relative to the blade, resulting in a diminishing effect on endwall cooling. On the other hand, pre-swirl reduces the adverse pressure gradient, and the rotation generates Coriolis forces acting on the passage vortex, both contribute to an increasing effect on endwall cooling. Under pre-swirl condition, the diminishing effect is dominant, while in rotational condition, neither the diminishing nor the increasing effect exhibits an overwhelmingly dominant trend.
  • Engineering thermodynamics
    LIU Xiaomin, WU Qingbai, LI Jinping, Vojislav NOVAKOVIC
    Journal of Thermal Science. 2025, 34(2): 400-412. https://doi.org/10.1007/s11630-025-2082-9
    The exploitation of photovoltaic/thermal (PV/T) systems, which facilitate concurrent conversion of solar radiation into electrical and heat energies, presents substantial potential in the solar-abundant northwestern zone of China. This investigation endeavors to evaluate the efficacy of a micro heat pipe (M-HP) PV/T system via exhaustive experimental analysis conducted in Lanzhou. To improve the performance of M-HP-PV/T system, a comparison was made between the optimal angles for each day and the entire year. The system inside greenhouse exhibited an average photovoltaic conversion efficiency (PCE) and thermal conversion efficiency (TCE) of 12.32% and 42.81%. The system of external environment registered average PCE and TCE values of 12.99% and 21.08%. To further understand the system’s operational results, a mathematical model was constructed through the integration of experimental data, exhibiting good agreement between the simulated outcomes and empirical observations. The average solar irradiance of daily optimum angle was 728.3 W/m2; the annual optimum angle was 29° with an average solar irradiance of 705.6 W/m2. The average annual total powers at the optimal angle outside the greenhouse and inside the greenhouse were 448.0 W and 398.7 W. The average annual total efficiencies at the optimal angle outside the greenhouse and inside the greenhouse were 40.8% and 56.9%. The total power in the greenhouse was lower by 49.3 W, while total efficiency in the greenhouse was higher by 16.1%.
  • Aerothermodynamics
    ZHANG Lei, FENG Xueheng, YUAN Wei, CHEN Ruilin, ZHANG Qian, LI Hongyang, AN Guangyao, LANG Jinhua
    Journal of Thermal Science. 2025, 34(2): 590-606. https://doi.org/10.1007/s11630-024-2081-2
    The selection of loss models has a significant effect on the one-dimensional mean streamline analysis for obtaining the performance of centrifugal compressors. In this study, a set of optimized loss models is proposed based on the classical loss models suggested by Aungier, Coppage, and Jansen. The proportions and variation laws of losses predicted by the three sets of models are discussed on the NASA Low-Speed-Centrifugal-Compressor (LSCC) under the mass flow of 22 kg/s to 36 kg/s. The results indicate that the weights of Skin friction loss, Diffusion loss, Disk friction loss, Clearance loss, Blade loading loss, Recirculation loss, and Vaneless diffuser loss are greater than 10%, which is dominant for performance prediction. Therefore, these losses are considered in the composition of new loss models. In addition, the multi-objective optimization method with the Genetic Algorithm (GA) is applied to the correction of loss coefficients to obtain the final optimization loss models. Compared with the experimental data, the maximum relative error of adiabatic the three classical models is 7.22%, while the maximum relative error calculated by optimized loss models is 1.22%, which is reduced by 6%. Similarly, compared with the original model, the maximum relative error of the total pressure ratio is also reduced. As a result, the present optimized models provide more reliable performance prediction in both tendency and accuracy than the classical loss models.
  • PENG Shuxuan, ZHANG Xiaoyu, WANG Wentao, ZHANG Hongwu, LI Xinlong
    Journal of Thermal Science. 2024, 33(5): 1851-1866. https://doi.org/10.1007/s11630-024-2018-9
    In this paper, a numerical simulation method is used to calculate a 1.5-stage axial transonic compressor to explore its unsteady flow mechanism. The performance curve is compared with the experimental data to verify the calculation method with a high numerical accuracy, which shows that the unsteady calculation has good reliability. According to the analysis of the data from the monitoring points under the near-stall condition, the unsteady disturbances originate from the tip region of blade and perform the strongest at the blade pressure surface with a broadband characteristic. Further analysis is conducted by combining with the characteristics of the transient flow field at the tip of blade. The results show that the unsteady pressure fluctuations are caused by the migration of the new vortex cores. These new vortex cores are generated by the breakdown of leakage vortex in the downstream, which is induced by the leakage vortex and shock wave interference. Moreover, the relationship between the unsteady flow characteristics and the working conditions is also studied. The leakage vortex intensity and the shock wave strength gradually increase with the decrease of flow rate. When the combination of the leakage vortex intensity and shock wave strength reaches the first threshold, a single frequency of unsteady disturbances appears at the blade tip. When the combination of the leakage vortex intensity and shock wave strength reaches the second threshold, the frequency of unsteady disturbances changes to a broadband.
  • Praveen BARMAVATU, Sunil Kumar KOTHAPALLI, Abilash RADHAKRISHNAN, Dani Jermisha RAILIS
    Journal of Thermal Science. 2024, 33(5): 1642-1656. https://doi.org/10.1007/s11630-024-2008-y
    Thermal energy conversion and also storage system is to advance knowledge and develop practical solutions at the intersection of micro and nano-scale engineering, energy conversion, and sustainability. This research addresses the challenge of enhancing these critical aspects to ensure prolonged system performance and durability in the context of evolving energy technologies. This research analyses the anti-oxidation and filtration behaviours of micro and nano-scale structures in the context of electro- and photo-thermal energy conversion and also storage systems. A micro multiscale hierarchical structure strategy is presented to fabricate multi-scale double-layer porous wick evaporators with the electrospun nanofibers made of gelatin-polyamide 6 (GPA6) and Ti3C2Tx MXene/silver nanowire with Cellulose Micro/NanoFibers (CMNF) cryogens by using spark plasma sintering (SPS) based high-pressure hydrothermal treatment model. An excellent anti-oxidation effect was offered by coating the film in thermal conditions and the anti-oxidation properties were further examined from 500°C to 850°C. The results are analysed using Matlab software to improve the efficiency of energy conversion processes by integrating nanostructures into thermal systems, to increase energy output while minimizing losses. The silver nanowire is with a heat transfer coefficient of 78%, a mass remaining rate of 98.7%, and an energy storage efficiency of 23.8%. This study enhances energy density and duration by integrating nanostructures into thermal systems while minimizing energy losses, and it not only exhibits excellent anti-oxidation properties but also possesses superior filtration capabilities for designing and engineering multifunctional nanomaterials.
  • MAO Xiaochen, JIAO Yingchen, CHENG Hao, ZHANG Botao, LIU Bo
    Journal of Thermal Science. 2024, 33(6): 2047-2058. https://doi.org/10.1007/s11630-024-2053-6
    Axial overlap (AO) and percent pitch (PP) are considered as key position configuration parameters that affect the tandem cascade performance. The objective of the current study is to investigate the optimal design criteria for these two parameters in tandem cascades of subsonic highly-loaded two-dimensional compressors. Before that, the influence mechanisms of AO and PP are explored separately. Research results show that higher PP is beneficial for decreasing rear blade (RB) load, but an invalidity of gap flow occurs when it approaches 1. The change in AO has an influence on the adverse pressure gradient of the front blade (FB), and it also affects the gap flow strength and FB wake development. Then, the optimal design criteria for AO and PP are obtained in a large design space, which clarifies the matching relationship of the two parameters at different operating conditions. The best global range of AO is about –0.05 to 0.05 while PP is between 0.85 to 0.92, and PP should be smaller to avoid performance degradation as AO increases. According to the fault tolerance in practical applications, PP should be closer to the lower bound to ensure that the deterioration boundary is wide enough.
  • KAN Xiaoxu, SUO Licheng, LEI Haodong, WU Wanyang, ZHONG Jingjun
    Journal of Thermal Science. 2024, 33(6): 2019-2031. https://doi.org/10.1007/s11630-024-2047-4
    Supersonic wind tunnel experiment is one of the important measurements for developing advanced gas turbines, and supersonic multi-hole probes are sophisticated tools to measure pneumatic parameters in such experiments. However, shock waves form around the probe head in supersonic flow, which affect the accuracy of results. In this study, a supersonic five-hole probe is selected as the research object. Firstly, a compound five-hole pressure-temperature probe was designed and produced with 3D-printing technology. Then, the shock wave spectrum was numerically calculated by three methods, which were the Mach number, density gradient, and shock function; in contrast to the other two methods, the shock function could accurately identify the types and ranges of shock and expansion waves. The results show that a strong shock wave is formed at the front section of the probe head, and the shock wave generated around the pressure measuring tube affects the total pressure and Mach number of the flow field, which causes the increase of entropy. The intensity of the shock wave at the head of the pressure measuring tube is the largest, causing a decrease in the total pressure around the flow field. Afterwards, to reduce the calculation errors caused by neglecting the compressibility of gases and the entropy increase, a gas compression factor δs was introduced. It is proved that the error of the calculated pneumatic parameters is less than 5% and 10% in subsonic and supersonic condition, respectively, with the gas compression factor considered. The research results of this paper provide theoretical reference for the design and use of pneumatic probes during subsonic to supersonic flow.
  • LI Guanru, ZHONG Yangfan, BAO Chujin, CHEN Yongping, ZHANG Chengbin
    Journal of Thermal Science. 2024, 33(5): 1794-1808. https://doi.org/10.1007/s11630-024-2013-1
    Efficient thermal management of lithium-ion battery, working under extremely rapid charging-discharging, is of widespread interest to avoid the battery degradation due to temperature rise, resulting in the enhanced lifespan. Herein, thermal management of lithium-ion battery has been performed via a liquid cooling theoretical model integrated with thermoelectric model of battery packs and single-phase heat transfer. Aiming to alleviate the battery temperature fluctuation by automatically manipulating the flow rate of working fluid, a nominal model-free controller, i.e., fuzzy logic controller is designed. An optimized on-off controller based on pump speed optimization is introduced to serve as the comparative controller. Thermal control simulations are conducted under regular operating and extreme operating conditions, and two controllers are applied to control battery temperature with proper intervals which is conducive to enhance the battery charge-discharge efficiency. The results indicate that, for any operating condition, the fuzzy logic controller shows excellence in terms of the tracking accuracy of set-point of battery temperature. Thanks to the establishment of fuzzy set and fuzzy behavioral rules, the battery temperature has been throughout maintained near the set point, and the temperature fluctuation amplitude is highly reduced, with better temperature control accuracy of ~0.2°C (regular condition) and ~0.5°C (extreme condition) compared with ~1.1°C (regular condition) and ~1.6°C (extreme condition) of optimized on-off controller. While in the case of extreme operating condition, the proposed optimized on-off controller manifests the hysteresis in temperature fluctuation, which is ascribed to the set of dead-band for the feedback temperature. The simulation results cast new light on the utilization and development of model-free temperature controller for the thermal management of lithium-ion battery.
  • WANG Shuang, MU Lin, LI Xue, XIE Jun, DONG Ming
    Journal of Thermal Science. 2025, 34(1): 34-49. https://doi.org/10.1007/s11630-024-2061-6
    Turbulent agglomeration is viewed as a promising technology for enhancing fine particle removal efficiency. To better understand particle transport, agglomeration behaviors, and fluid-particle interactions, we numerically explored these phenomena under cylindrical vortex wake influence using a coupled large eddy simulation and discrete element method (LES-DEM) approach. The validity of the LES approach was verified by comparison with available direct numerical simulation (DNS) results. We adopted the Johnson-Kendall-Roberts (JKR) contact model for particle-particle interactions. The particle dispersion and agglomeration characteristics of particles with different diameters (dp=2–20 μm) in the laminar and transition of shear layer (TrSL) flow regimes were analyzed. Fine particles were concentrated at the vortex centers, while larger particles accumulated around the vortices. The agglomeration efficiency exhibited an M-shaped profile spanwise (y-direction). With increasing Reynolds number, the agglomeration efficiency and turbulence intensity improve. The particle agglomeration efficiency peaks at a certain Reynolds number. However, at higher Reynolds numbers, reducing the residence time of particles in the flow field decreases the agglomeration efficiency.
  • WANG Xu, XU Xu, YU Jiaqi, YANG Qingchun
    Journal of Thermal Science. 2024, 33(6): 2426-2436. https://doi.org/10.1007/s11630-024-2044-7
    Convective heating of the rocket base caused by high-temperature reverse flow has long been a focus of thermal protection research. With distinctive structural characteristics, the base thermal environment of a twin-nozzle engine proves more susceptible to the recirculation region than its multi-nozzle counterparts. During the transonic stage, significant alterations in the flow field structure at the rocket base strongly influence the recirculation region. This study investigated the thermal environment of the rocket base with a twin-nozzle configuration in freestream at Mach numbers of 0.6 to 3.0. Results indicate that the freestream Mach number significantly affects the thermal environment at the rocket base during the transonic stage. The increase of Mach number from 0.6 to 1.0 causes the convective heating of the rocket base to increase by 7.7 times. This phenomenon arises due to the plume-induced shock wave caused by the impact of the supersonic free shear layer and plume shear layer while the flight speed exceeds the sound speed. The interaction between the shock wave and the shear layer amplifies turbulence in the recirculation region and at the inflection point, resulting in a stronger high-temperature reverse flow. In addition, the cause of low-altitude base heating was analyzed, and it was found that the mechanism is different from the high-temperature countercurrent effect caused by plume interaction.
  • SHANG Xueshuo, WANG Yixin, LI Qingwen, WANG Rui, CUI Zheng, SHAO Wei
    Journal of Thermal Science. 2024, 33(5): 1701-1711. https://doi.org/10.1007/s11630-024-1982-4
    Rectangular microchannel heat sinks (MCHS) are widely used to cool high-heat-flux electronic devices. However, previous studies focused mainly on MCHS with uniform channels (UCs). This study considers a microchannel heat sink with non-uniform channels (NUCs). A mathematical model is developed based on energy equations and the Darcy flow principle. Explicit expressions for total thermal resistance and coolant pressure drop are derived using the thermoelectric analogy. Experiments and numerical simulations are performed to verify the mathematical model. As non-uniformity increases, total coolant pressure drop decreases but at the cost of higher thermal resistance. The overall performance of NUCs is better than that of UCs because of their lower ratio of pumping power to cooling power. Heat transfer performance of NUCs changes little for more than 120 channels and depends mainly on channel arrangement. A multi-objective optimization is conducted to minimize the thermal resistance and pumping power of an NUC. An optimal NUC saves 64% pumping power compared with a conventional UC for the total thermal resistance of 0.1°C/W, indicating that the use of non-uniform channels could be very helpful to reduce the flow resistance of MCHS.
  • Chunkan YU, Cheng CHI, Chongchong TANG, Bronislava GORR
    Journal of Thermal Science. 2025, 34(3): 707-719. https://doi.org/10.1007/s11630-025-2106-5
    In this study, we perform a numerical investigation of a steady laminar stagnation flow flame stabilized at a wall with the consideration of heat transport, focusing on a lean hydrogen/air mixture with a fuel/air equivalence ratio 0.6. We discuss the NO emissions and their formation rates under various conditions, such as flow velocity and combustion pressure. It is found that the predominant reaction pathway for NO formation involves NNH radicals, though this changes near the wall surface. Beyond examining the wall’s influence on flame structures, the present work focuses on the impact of combustion process on materials. Specifically, the accumulation of atomic hydrogen at the wall surface is explored, which is significant for the consequent modeling of potential hydrogen embrittlement. Additionally, the growth rate of oxide layers on the material surface increases significantly if the combustion pressure and consequently the combustion temperatures are enhanced. These investigations offer valuable insights into how combustion processes affect material, which is useful for designing engineering components under high-temperature environments.
  • WANG Tianyi, ZHONG Wenqi, CHEN Xi, MA Qilei, GU Yonghua, DONG Wenli, PAN Zhichao
    Journal of Thermal Science. 2025, 34(3): 738-755. https://doi.org/10.1007/s11630-025-2126-1
    Digital twin is a cutting-edge technology in the energy industry, capable of predicting real-time operation data for equipment performance monitoring and operational optimization. However, methods for calibrating and fusing digital twin prediction with limited in-situ measured data are still lacking, especially for equipment involving complicated multiphase flow and chemical reactions like coal-fired boilers. In this work, using coal-fired boiler water wall temperature monitoring as an example, we propose a digital twin approach that reconstructs the water wall temperature distribution with high spatial resolution in real time and calibrates the reconstruction using in-situ water wall temperature data. The digital twin is established using the gappy proper orthogonal decomposition (POD) reduced-order model by fusing CFD solutions and measured data. The reconstruction accuracy of the digital twin was initially validated. And then, the minimum number of measured data sampling points required for precise reconstruction was investigated. An improved uniform data collection method was subsequently developed. After that, the computational time required for the digital twin and the traditional CFD was compared. Finally, the reconstruction method was further validated by in-situ measured temperature from the in-service boiler. Results indicate that the established digital twin can precisely reconstruct the water wall temperature in real time. Thirty-nine sampling points are sufficient to reconstruct the temperature distribution with the original data collection method. The proposed uniform data collection method further reduces the mean relative errors to less than 0.4% across four test cases, and with the constrained technique, the errors decrease to 0.374% and 0.345% for Cases 1 and 3, which had poor reconstructions using the original sampling point arrangement. In addition, the reconstruction time of the digital twin is also considerably reduced compared to CFD. Engineering application indicates that the reconstructed temperatures are highly consistent with in-situ measured data. The established water wall temperature digital twin is beneficial for water wall tube overheating detection and operation optimization.
  • ZHAO Decai, WANG Bo
    Journal of Thermal Science. 2025, 34(1): 159-175. https://doi.org/10.1007/s11630-024-1994-0
    The supercritical carbon dioxide (sCO2) Brayton cycle system has become an emerging and highly promising method of thermal power conversion due to its efficiency advantage, system compactness, and excellent adaptability of the heat sources. For the low carbon sCO2 Brayton cycle testbed with cycle output power approaching 3 MW, a relatively detailed dynamic simulation model of the entire system is constructed to explore the dynamic response characteristics of the system with different startup strategies and different buffer tank volumes during the startup process. The simulation results indicate that the smaller the volume of the buffer tank, the more rapid and obvious the parameter fluctuation in the buffer tank during the startup. Assuming the allowable relative deviation limit of density is 5%, then the ratio of the buffer tank volume to the volume of the entire closed loop should not be lower than 36.80%. The strategy of simultaneous temperature and speed increase during turbine bypass start can effectively reduce the fluctuation of compressor inlet parameters and reach the steady-state more quickly. This paper provides the recommended matching table for the opening of the turbine bypass valve (TBV) and the main regulating valve (MGV) to reduce the parameter fluctuation during the bypass switching. The effectiveness of the proposed turbine bypass and bypass switching startup strategy is verified by simulation, which may be used as a reference for test bench’s future debugging and operation.
  • HUANG Xiankun, BAI Zhang, ZHU Xiaoli, WANG Shuoshuo, MU Lin, GONG Liang
    Journal of Thermal Science. 2025, 34(1): 323-336. https://doi.org/10.1007/s11630-025-2092-7
    A 3D simulation using Computational Particle Fluid Dynamics (CPFD) methods was used to calculate coal combustion in a 75 t/h industrial-scale circulating fluidized bed (CFB) boiler. Combustion characteristics, gas-solid flow characteristics, and gaseous pollutant emissions of CFB boilers from combustion ignition to stable operation were systematically evaluated in this study. Results show that the temperature distribution is relatively uniform throughout the boiler. As the combustion process unfolds within the boiler, the gas composition curve strikingly portrays the inverse correlation between CO2 and O2 concentrations. As the combustion reaction progresses, it becomes evident that the concentration of CO2 progressively increases, while the concentration of O2 concurrently decreases. This inverse relationship underscores the fundamental combustion reaction, where carbon-based fuels react with oxygen to produce carbon dioxide and release energy. Furthermore, a comprehensive analysis has revealed that, from ignition to stable combustion, both nitric oxide (NO) and sulfur dioxide (SO2) emissions exhibit a declining trend. This reduction in pollutant generation is attributed to the improvement in combustion efficiency. More complete combustion leads to lower levels of unburned hydrocarbons, which are prone to NO formation. Similarly, the sulfur content in the fuel is more efficiently oxidized to sulfur trioxide (SO3) or bound in sulfates, reducing SO2 emissions. At steady state in the simulation, the SO2 mass flow rate varies significantly with the furnace height, gradually increasing from 0.07 kg·s–1 at 4 m at the bottom of the furnace to a peak of 0.078 kg·s–1 at 8 m in the center, and then decreasing to 0.06 kg·s–1 at 20 m at the top of the furnace.
  • CHEN Yulin, WU Xinwen, SHAO Yingjuan, ZHONG Wenqi
    Journal of Thermal Science. 2024, 33(6): 2299-2317. https://doi.org/10.1007/s11630-024-2051-8
    Channel structure has a significant effect on the heat transfer performance of PCHE. In this study, a set of rectangular straight channel PCHEs with different cross-section aspect ratios had been tested on S-CO2 heat transfer experimental platform, the effect of mass flow rate in both cold and heat sides, as well as the cross-section aspect ratio of the rectangular straight channel, on the heat transfer performance of PCHE was investigated. The results show that the comprehensive heat transfer performance of the rectangular cross-section is better than that of the semicircular cross-section; increasing the aspect ratio can improve the comprehensive heat transfer performance of PCHE, but the strengthening effect diminishes as the aspect ratio increases. Increasing the mass flow rate on both sides not only enhances the pre-cooler’s cooling capacity and heat transfer, but also raises the pressure drop. In addition, an improved heat transfer correlation for rectangular cross-section PCHE was proposed, considering the effects of cross-sectional aspect ratio and pseudo-critical temperature is proposed in the range of Re from 3169 to 48 474 and Pr from 0.98 to 12.5, the fitted results better predict the local Nu and f magnitudes and trends in the pre-cooler under different cooling conditions, outperforming the simulated data and Gnielinski and Blasius correlation.
  • LI Peng, XU Jiaqi, WANG Binbin, LIU Jianyang, ZHAO Wensheng, HAN Zhonghe
    Journal of Thermal Science. 2025, 34(1): 188-205. https://doi.org/10.1007/s11630-024-2043-8
    During data center operation, it generates a significant volume of low-grade waste heat. To recover waste heat, a coupled system including solar collector, double effect absorption refrigeration and organic Rankine cycle is proposed. The system performance is analyzed in detail. For the organic Rankine cycle, five organic working fluids (R245fa, R245ca, R123, R11, and R113) are selected. R245fa, R113 and R245ca obtain the maximum net power output, thermal efficiency and exergy efficiency, respectively. In the double effect absorption refrigeration system, the evaporation temperature, condensation temperature, and generation pressure affect the COP and exergy efficiency. When the generator pressure is unchanged, the COP increases with increasing evaporation temperature and decreasing condensation temperature. When the COP reaches 1.3, the COP slightly decreases as the evaporation temperature or condensation temperature changes. Similarly, the exergy efficiency of refrigeration systems exhibits the same trend as the COP, and the exergy efficiency maximum value appears at approximately 0.32. A new performance indicator, rPUE, was defined to evaluate the data center power utilization efficiency. The flow distribution ratio and heat source temperature were optimized with multi-objective optimization. When the mass flow distribution rate is 0.6 and the heat source temperature is 441.5 K, rPUE and the total unit production costs of the system obtain the optimal solution.
  • SINGH Hardeep, TING David S-K, READER Graham, ESHTIAGHI Nicky, ICHIYANAGI Mitsuhisa, SUZUKI Takashi
    Journal of Thermal Science. 2024, 33(5): 1726-1743. https://doi.org/10.1007/s11630-024-1992-2
    This research investigates innovative fin-type radiators for automobile engine cooling system. Micro-channel and helical radiators, along with straight type, were analyzed for heat transfer characteristics under various conditions. The uniqueness of this study is evident in the design of microchannel and helical radiators. For helical radiators, the inner rod features 4/8 helical-shaped water galleries, while the outer tube frame with embedded fins remains consistent. In contrast, the microchannel radiators have compact trapezoidal-shaped water galleries with separate fin strips. Furthermore, the novelty of the research is enhanced by the utilization of 3D printing technology in the manufacturing process. In constant fin height analysis at varied water and air flow rate, Microchannel Water Air Radiator with fin height 10.5 mm (MCWAR10.5) depicted a higher heat transfer rate amongst the radiators. In comparison to Straight Water Air Radiator with fin height 9.5 mm (SWAR9.5), the heat transfer rate is 30.3% and 1.3 times higher. However, in constant fin surface area analysis, microchannel radiator (MCWAR3.2) illustrates lower heat dissipation than Helical radiator (HWAR138) but higher than HWAR134 and Straight radiator (SWAR6). The examination of pumping loss indicated that the Micro-channel radiator outperformed helical radiators due to its lower pressure loss. The average pressure loss for Micro-channel radiators was 0.74 kPa, making it 1.2 times higher than that of a straight radiator (0.62 kPa), indicating a better trade-off.
  • XU Yunting, ZHANG Kai, DAI Xiaoye, SHI Lin
    Journal of Thermal Science. 2024, 33(5): 1990-2003. https://doi.org/10.1007/s11630-024-1981-5
    In response to the Kigali Amendment to the Montreal Protocol and global low-carbon emission environmental requirements, the phase-out and decomposition of numerous HFC refrigerants have become urgent, necessitating efficient and mild decomposition methods. This study investigates the thermal decomposition and oxidative thermal decomposition pathways of the typical hydrofluorocarbon refrigerant HFC-134a, employing a combination of experimental and quantum chemical DFT simulation methods. Quantum chemical simulations reveal that the initial reaction bond cleavage serves as the rate-determining step during the thermal decomposition process, with the most easily detectable closed-shell products including CF2=CHF, HF, CH3F, CHF3, CH2F2, and CF4. Reactive oxygen species can significantly reduce the Gibbs free energy barrier for HFC-134a decomposition. To achieve efficient degradation of HFC-134a, appropriate catalysts should be developed and selected to increase the level of reactive oxygen species in the reaction system. Experimental studies further corroborate that HFC-134a may undergo degradation through distinct reaction pathways under varying temperature (240°C to 360°C) and pressure (0.1 MPa to 4.5 MPa) conditions, in agreement with simulation predictions.