LIU Feng, ZHOU Jiyuan, GONG Yutong, LV Yanlong, SUI Jun
The absorption cycle is a promising technology for harnessing low-temperature heat, playing a crucial role in achieving the objectives of carbon peaking and carbon neutrality. As a significant element in distributed energy systems, the absorption cycle can utilize various types of low-grade heat to fulfill cooling, heating, and electrical energy demands. Therefore, it can be employed in diverse settings to unleash its substantial energy-saving potential. However, the widespread adoption of the absorption cycle is limited to specific scenarios. Hence, further efforts are needed to enhance its technological maturity, gain societal acceptance, and expand its application scope. Focusing on the utilization of different low-grade heat, this paper provides an overview of significant advancements in the application research of various absorption cycles, such as the absorption refrigeration cycle, absorption heat pump, absorption heat transformer, and the absorption power cycle. According to current research, absorption cycles play a critical role in energy conservation and reducing carbon dioxide emissions. They can be applied to waste heat recovery, heating, drying, energy storage, seawater desalination, refrigeration, dehumidification, and power generation, leading to substantial economic benefits. The paper also outlines the primary challenges in the current application of the absorption cycle and discusses its future development direction. Ultimately, this paper serves as a reference for the application research of the absorption cycle and aims to maximize its potential in achieving global carbon neutrality.