WU Yuhao, WU Yuefei, LUO Gubai, ZHANG Teng, WANG Qing, FAN Liwu, SONG Xin, YU Zitao
High energy consumption is a serious issue associated with in situ thermal desorption (TD) remediation of sites contaminated by petroleum hydrocarbons (PHs). The knowledge on the thermophysical properties of contaminated soil can help predict accurately the transient temperature distribution in a remediation site, for the purpose of energy conservation. However, such data are rarely reported for PH-contaminated soil. In this study, by taking diesel as a representative example for PHs, soil samples with constant dry bulk density but different diesel mass concentrations ranging from 0% to 20% were prepared, and the variations of their thermal conductivity, specific heat capacity and thermal diffusivity were measured and analyzed over a wide temperature range between 0°C and 120°C. It was found that the effect of diesel concentration on the thermal conductivity of soil is negligible when it is below 1%. When diesel concentration is below 10%, the thermal conductivity of soil increases with raising the temperature. However, when diesel concentration becomes above 10%, the change of the thermal conductivity of soil with temperature exhibits the opposite trend. This is mainly due to the competition between soil minerals and diesel, because the thermal conductivity of minerals increases with temperature, whereas the thermal conductivity of diesel decreases with temperature. The analysis results showed that, compared with temperature, the diesel concentration has more significant effects on soil thermal conductivity. Regardless of the diesel concentration, with the increase of temperature, the specific heat capacity of soil increases, while the thermal diffusivity of soil decreases. In addition, the results of a control experiment exhibited that the relative differences of the thermal conductivity of the soil samples containing the same concentration of both diesel and a pure alkane are all below 10%, indicating that the results obtained with diesel in this study can be extended to the family of PHs. A theoretical prediction model was proposed based on cubic fractal and thermal resistance analysis, which confirmed that diesel concentration does have a significant effect on soil thermal conductivity. For the sake of practical applications, a regression model with the diesel concentration as a primary parameter was also proposed.