[1] Shi L.F., Shu G.Q., Tian H., Huang G.D., Chen T.Y., Li X.Y., Li D.Q., Experimental comparison between four CO2-based transcritical Rankine cycle (CTRC) systems for engine waste heat recovery. Energy Conversion and Management, 2017, 150: 159–171.
[2] Rao N.T., Oumer A.N., Jamaludin U.K., State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels. The Journal of Supercritical Fluids, 2016, 116: 132–147.
[3] Liu Y.P., Wang Y., Huang D.G., Supercritical CO2 Brayton cycle: A state-of-the-art review. Energy, 2019, 189: 115900.
[4] Syblik J., Vesely L., Entler S., Stepanek J., Dostal V., Analysis of supercritical CO2 Brayton power cycles in nuclear and fusion energy. Fusion Engineering and Design, 2019, 146: 1520–1523.
[5] Al-Sulaiman F.A., Atif M., Performance comparison of different supercritical carbon dioxide Brayton cycles integrated with a solar power tower. Energy, 2015, 82: 61–71.
[6] Li Z.Z., Liu X.J., Shao Y.J., Zhong W.Q., Research and development of supercritical carbon dioxide coal-fired power systems. Journal of Thermal Science, 2020, 29(3): 546–575.
[7] Pan M.Z., Zhu Y., Bian X.Y., Liang Y.C., Lu F.L., Ban Z.B., Theoretical analysis and comparison on supercritical CO2 based combined cycles for waste heat recovery of engine. Energy Conversion and Management, 2020, 219: 113049.
[8] Pizzarelli M., The status of the research on the heat transfer deterioration in supercritical fluids: A review. International Communications in Heat and Mass Transfer, 2018, 95: 132–138.
[9] Wang Q.Y., Xu J.L., Zhang C.R., Hao B.T., Cheng L.X., A critical review on heat transfer of supercritical fluids. Heat Transfer Engineering, 2023, 44(21–22): 1969–1994.
[10] Bazargan M., Mohseni M., The significance of the buffer zone of boundary layer on convective heat transfer to a vertical turbulent flow of a supercritical fluid. The Journal of Supercritical Fluids, 2009, 51(2): 221–229.
[11] Zhang S.J., Xu X.X., Liu C., Liu X.X., Ru Z.P., Dang C.B., Experimental and numerical comparison of the heat transfer behaviors and buoyancy effects of supercritical CO2 in various heating tubes. International Journal of Heat and Mass Transfer, 2020, 149: 119074.
[12] Rao N.T., Oumer A.N., Jamaludin U.K., State-of-the-art on flow and heat transfer characteristics of supercritical CO2 in various channels. The Journal of Supercritical Fluids, 2016, 116: 132–147.
[13] Cabeza L.F., de Gracia A., Fernández A.I., Farid M.M., Supercritical CO2 as heat transfer fluid: A review. Applied Thermal Engineering, 2017, 125: 799–810.
[14] Yang M., Numerical study on the heat transfer of carbon dioxide in horizontal straight tubes under supercritical pressure. Plos One, 2016, 11(7): e0159602.
[15] Fan Y.H., Tang G.H., Li X.L., Yang D.L., Wang S.Q., Correlation evaluation on circumferentially average heat transfer for supercritical carbon dioxide in non-uniform heating vertical tubes. Energy, 2019, 170: 480–496.
[16] Viswanathan K., Krishnamoorthy G., The effects of wall heat fluxes and tube diameters on laminar heat transfer rates to supercritical CO2. International Communications in Heat and Mass Transfer, 2021, 123: 105197.
[17] Zhang H.Y., Guo J.F., Cui X.Y., Huai X.L., Heat transfer performance of supercritical pressure CO2 in a non-uniformly heated horizontal tube. International Journal of Heat and Mass Transfer, 2020, 155: 119748.
[18] Dong W.Z., Wei W., Zhao L., Gang X., Zhou T.Y., Ba J., Numerical study on flow and heat transfer of S-CO2 in inclined tubes under different flow conditions. Case Studies in Thermal Engineering, 2022, 35: 102053.
[19] Li Y.X., Diao L., Chen Y., Numerical simulation on heat transfer of supercritical carbon dioxide in helical coiled channels under one-side heating. International Journal of Thermal Sciences, 2022, 174: 107391.
[20] Guo J.F., Song J., Han Z.X., Pervunin K.S., Markides C.N., Investigation of the thermohydraulic characteristics of vertical supercritical CO2 flows at cooling conditions. Energy, 2022, 256: 124628.
[21] Lei X.L., Zhang Q., Zhang J., Li H.X., Experimental and numerical investigation of convective heat transfer of supercritical carbon dioxide at low mass fluxes. Applied Sciences-Basel, 2017, 7(12): 1260.
[22] Zhang Q., Li H.X., Kong X.F., Liu J.L., Lei X.L., Special heat transfer characteristics of supercritical CO2 flowing in a vertically-upward tube with low mass flux. International Journal of Heat and Mass Transfer, 2018, 122: 469–482.
[23] Zhang S.J., Xu X.X., Liu C., Liu X.X., Dang C.B., Experimental investigation on the heat transfer characteristics of supercritical CO2 at various mass flow rates in heated vertical-flow tube. Applied Thermal Engineering, 2019, 157: 113687.
[24] Gong K.G., Zhu B.G., Peng B., He J.X., Numerical Investigation of Heat Transfer Characteristics of scCO2 Flowing in a Vertically-Upward Tube with High Mass Flux. Entropy, 2022, 24(1): 79.
[25] Zhao Z.H., Yuan B.Q., Du W.J., Assessment and modification of buoyancy criteria for supercritical pressure CO2 convection heat transfer in a horizontal tube. Applied Thermal Engineering, 2020, 169: 114808.
[26] Cai D.N., Xu X.X., Zhang S.J., Liu C., Dang C.B., Experimental investigation on the flow instability of supercritical CO2 in vertical upward circular tube in trans-critical CO2 Rankine system. Applied Thermal Engineering, 2021, 183: 116139.
[27] Lei Y.C., Xu B., Chen Z.Q., Experimental investigation on cooling heat transfer and buoyancy effect of supercritical carbon dioxide in horizontal and vertical micro-channels. International Journal of Heat and Mass Transfer, 2021, 181: 121792.
[28] Xiang M.R., Guo J.F., Huai X.L., Cui X.Y., Thermal analysis of supercritical pressure CO2 in horizontal tubes under cooling condition. The Journal of Supercritical Fluids, 2017, 130: 389–398.
[29] Zhang S.J., Xu X.X., Liu C., Zhang Y.D., Dang C.B., The buoyancy force and flow acceleration effects of supercritical CO2 on the turbulent heat transfer characteristics in heated vertical helically coiled tube. International Journal of Heat and Mass Transfer, 2018, 125: 274–289.
[30] Zhao C.R., Liu Q.F., Zhang Z., Jiang P.X., Bo H.L., Investigation of buoyancy-enhanced heat transfer of supercritical CO2 in upward and downward tube flows. The Journal of Supercritical Fluids, 2018, 138: 154–166.
[31] Lei Y.C., Chen Z.Q., Numerical study on cooling heat transfer and pressure drop of supercritical CO2 in wavy microchannels. International Journal of Refrigeration- Revue Internationale Du Froid, 2018, 90: 46–57.
[32] Cao Y.L., Xu R.N., Yan J.J., He S., Jiang P.X., Direct numerical simulation of convective heat transfer of supercritical pressure CO2 in a vertical tube with buoyancy and thermal acceleration effects. Journal of Fluid Mechanics, 2021, 927: A29.
[33] Ye K., Zhang Y.L., Yang L.L., Zhao Y.R., Li N., Xi C.K., Modeling convective heat transfer of supercritical carbon dioxide using an artificial neural network. Applied Thermal Engineering, 2019, 150: 686–695.
[34] Liu X.X., Xu X.X., Liu C., He J.C., Dang C.B., The effect of geometry parameters on the heat transfer performance of supercritical CO2 in horizontal helically coiled tube under the cooling condition. International Journal of Refrigeration-Revue Internationale Du Froid, 2019, 106: 650–661.
[35] Diao L., Chen Y., Li Y.X., Nonuniform heat transfer of supercritical pressure carbon dioxide under turbulent cooling condition in circular tubes at various inclination angles. Nuclear Engineering and Design, 2019, 352: 110153.
[36] Wang L., Pan Y.C., Lee J.D., Wang Y., Fu B.R., Pan C., Experimental investigation in the local heat transfer of supercritical carbon dioxide in the uniformly heated horizontal miniature tubes. International Journal of Heat and Mass Transfer, 2020, 159: 120136.
[37] Lei Y., Chen Z., Cooling heat transfer and pressure drop of supercritical CO2 in wavy microchannels with consistent and opposite crests and troughs. International Journal of Refrigeration, 2020, 109: 64–81.
[38] Liu X.X., Xu X.X., Liu C., Bai W.J., Dang C.B., Heat transfer deterioration in helically coiled heat exchangers in trans-critical CO2 Rankine cycles. Energy, 2018, 147: 1–14.
[39] Luo X.B., Yang Z.N., Zhang J.W., Chen W., Chyu M.K., Effect of guide vane on pressure loss and heat transfer characteristics of supercritical CO2 in U-shaped channel. Journal of Thermal Science, 2022, 31(3): 701–711.
[40] Li Z.H., Tang G.L., Wu Y.X., Zhai Y.L., Xu J.X., Wang H., Lu J.F., Improved gas heaters for supercritical CO2 Rankine cycles: Considerations on forced and mixed convection heat transfer enhancement. Applied Energy, 2016, 178: 126–141.
[41] Liu X.X., Xu X.X., Liu C., Ye J., Li H.R., Bai W.J., Dang C.B., Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO2 in helically coiled tube at various inclination angles. Applied Thermal Engineering, 2017, 116: 500–515.
[42] Wang K.Z., Xu X.X., Liu C., Bai W.J., Dang C.B., Experimental and numerical investigation on heat transfer characteristics of supercritical CO2 in the cooled helically coiled tube. International Journal of Heat and Mass Transfer, 2017, 108: 1645–1655.
[43] Lyu H.C., Wang H., Bi Q.C., Niu F.L., Experimental investigation on heat transfer and pressure drop of supercritical carbon dioxide in a mini vertical upward flow. Energies, 2022, 15(17): 6135.
[44] Ren Z., Zhang L., Zhao C.R., Jiang P.X., Bo H.L., Local flow and heat transfer of supercritical CO2 in semicircular zigzag channels of printed circuit heat exchanger during cooling. Heat Transfer Engineering, 2021, 42(22): 1889–1913.
[45] Yi Z.M., Xu Y., Chen X.L., Numerical study on heat transfer characteristics of supercritical CO2 in a vertical heating serpentine micro-tube. Applied Thermal Engineering, 2022, 212: 118609.
[46] Huang Y., Duan L.B., Liu D.Y., Wang Y.M., Computational investigation on heat transfer of supercritical CO2 in horizontal U-tubes. The Journal of Supercritical Fluids, 2022, 188: 105690.
[47] Khalesi J., Sarunac N., Razzaghpanah Z., Supercritical CO2 conjugate heat transfer and flow analysis in a rectangular microchannel subject to uniformly heated substrate wall. Thermal Science and Engineering Progress, 2020, 19: 100596.
[48] Yang Z.N., Chen W., Chyu M.K., Numerical study on the heat transfer enhancement of supercritical CO2 in vertical ribbed tubes. Applied Thermal Engineering, 2018, 145: 705–715.
[49] Hsieh J.C., Lin D.T.W., Lee B.H., Chung M.C., Experimental study on heat transfer of supercritical carbon dioxide in a long silica-based porous-media tube. Heat and Mass Transfer, 2017, 53(3): 995–1004.
[50] Han Z.X., Guo J.F., Liao H.Y., Zhang Z.M., Huai X.L., Numerical investigation on the thermal-hydraulic performance of supercritical CO2 in a modified airfoil fins heat exchanger. The Journal of Supercritical Fluids, 2022, 187: 105643.
[51] Zhao Z.X., Che D.F., Wu J., Yao S.W., Zhang K.L., Lin Y.S., Ke H.B., Numerical investigation on conjugate cooling heat transfer to supercritical CO2 in vertical double-pipe heat exchangers. Numerical Heat Transfer Part a-Applications, 2016, 69(5): 512–528.
[52] Cheng K.Y., Zhou J.Z., Zhang H.Z., Huai X.L., Guo J.F., Experimental investigation of thermal-hydraulic characteristics of a printed circuit heat exchanger used as a pre-cooler for the supercritical CO2 Brayton cycle. Applied Thermal Engineering, 2020, 171: 115116.
[53] Thimmaiah S., Wahidi T., Yadav A.K., Mahalingam A., Comparative computational appraisal of supercritical CO2-based natural circulation loop: effect of heat-exchanger and isothermal wall. Journal of Thermal Analysis and Calorimetry, 2020, 141(6): 2219–2229.
[54] Seo H., Cha J.E., Kim J., Sah I., Kim Y.W., Design and performance analysis of a supercritical carbon dioxide heat exchanger. Applied Sciences-Basel, 2020, 10(13): 4545.
[55] Yang J.Z., Yang Z., Duan Y.Y., A review on integrated design and off-design operation of solar power tower system with SO2 Brayton cycle. Energy, 2022, 246: 123348.
[56] Xu R.N., Zhang L., Wang W.J., Jiang P.X., Core-scale investigation of convective heat transfer of supercritical pressure CO2 in hot rock fracture with various inclinations. Applied Thermal Engineering, 2021, 188: 116648.
[57] Wu P., Ma Y.D., Gao C.T., Liu W.H., Shan J.Q., Huang Y.P., Wang J.F., Zhang D., Ran X., A review of research and development of supercritical carbon dioxide Brayton cycle technology in nuclear engineering applications. Nuclear Engineering and Design, 2020, 368: 110767.
[58] Liu J., Xu M.Y., Liu P.C., Xi W.X., Heat transfer and flow structure characteristics of regenerative cooling in a rectangular channel using supercritical CO2. Aerospace, 2023, 10(6): 564.
[59] Awais A.A., Saeed M., Kim M.H., Performance enhancement in minichannel heat sinks using supercritical carbon dioxide sCO2 as a coolant. International Journal of Heat and Mass Transfer, 2021, 177: 121539.
[60] Fan Y.H., Tang G.H., Numerical investigation on heat transfer of supercritical carbon dioxide in a vertical tube under circumferentially non-uniform heating. Applied Thermal Engineering, 2018, 138: 354–364.
[61] Lei X.L., Zhang J., Gou L.T., Zhang Q., Li H.X., Experimental study on convection heat transfer of supercritical CO2 in small upward channels. Energy, 2019, 176: 119–130.
[62] Ye Z.L., Zendehboudi A., Hafner A., Cao F., General heat transfer correlations for supercritical carbon dioxide heated in vertical tubes for upward and downward flows. International Journal of Refrigeration, 2022, 140: 57–69.
[63] Yan C.S., Xu J.L., Numerical analysis on flow and heat transfer of supercritical CO2 in horizontal tube. Acta Physica Sinica, 2020, 69(4): 044401.
[64] Zhao Z.X., Che D.F., Zhang Y., Yao S.W., Zhang K.L., Lin Y.S., Numerical investigation on conjugate heat transfer to supercritical CO2 in membrane helical coiled tube heat exchangers. Numerical Heat Transfer Part a-Applications, 2016, 69(9): 977–995.
[65] Tanimizu K., Sadr R., Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube. Heat and Mass Transfer, 2016, 52(4): 713–726.
[66] Ciofalo M., Arini A., Di Liberto M., On the influence of gravitational and centrifugal buoyancy on laminar flow and heat transfer in curved pipes and coils. International Journal of Heat and Mass Transfer, 2015, 82: 123–134.
[67] Liu S.H., Huang Y.P., Liu G.X., Wang J.F., Leung L.K.H., Improvement of buoyancy and acceleration parameters for forced and mixed convective heat transfer to supercritical fluids flowing in vertical tubes. International Journal of Heat and Mass Transfer, 2017, 106: 1144–1156.
[68] Zhang H.Y., Guo J.F., Huai X.L., Cui X.Y., Cheng K.Y., Buoyancy effects on coupled heat transfer of supercritical pressure CO2 in horizontal semicircular channels. International Journal of Heat and Mass Transfer, 2019, 134: 437–449.
[69] Li Z.H., Zhai Y.L., Li K.Z., Wang H., Lu J.F., A quantitative study on the interaction between curvature and buoyancy effects in helically coiled heat exchangers of supercritical CO2 Rankine cycles. Energy, 2016, 116: 661–676.
[70] Zhu X.J., Zhang R.Z., Yu X., Cao M.G., Ren Y.X., Numerical study on the gravity effect on heat transfer of supercritical co2 in a vertical tube. Energies, 2020, 13(13): 3502.
[71] Chu X., Laurien E., Flow stratification of supercritical CO2 in a heated horizontal pipe. The Journal of Supercritical Fluids, 2016, 116: 172–189.
[72] He J.D., Yan J.J., Wang W., Jiang P.X., He S.S., Effects of buoyancy and thermophysical property variations on the flow of supercritical carbon dioxide. International Journal of Heat and Fluid Flow, 2020, 86: 108697.
[73] Wan T., Zhao P.H., Liu J.M., Wang C.Z., Lei M.Z., Mean velocity and temperature scaling for near-wall turbulence with heat transfer at supercritical pressure. Physics of Fluids, 2020, 32(5): 055103.
[74] Pandey S., Laurien E., Chu X., A modified convective heat transfer model for heated pipe flow of supercritical carbon dioxide. International Journal of Thermal Sciences, 2017, 117: 227–238.
[75] Nabil M., Rattner A.S., Large eddy simulations of high-heat-flux supercritical CO2 convection in microchannels: Mixed convection and non-uniform heating. International Journal of Heat and Mass Transfer, 2019, 145: 118710.
[76] Zhang K.D., Lu M.J., Sun Y.W., Wu Q., Wei W., Study of the heat transfer deterioration of supercritical CO2 in vertical pipes using a hybrid RANS/LES method. International Journal of Thermal Sciences, 2023, 185: 108101.
[77] Wang J.Y., Guan Z.Q., Gurgenci H., Sun Y.B., Hooman K., A comprehensive review on numerical approaches to simulate heat transfer of turbulent supercritical CO2 flows. Numerical Heat Transfer Part B-Fundamentals, 2020, 77(5): 349–400.
[78] Wang K.Z., Xu X.X., Wu Y.Y., Liu C., Dang C.B., Numerical investigation on heat transfer of supercritical CO2 in heated helically coiled tubes. The Journal of Supercritical Fluids, 2015, 99: 112–120.
[79] Zhang Y.D., Peng M.J., Xia G.L., Cong T.L., Numerical investigation on local heat transfer characteristics of S-CO2 in horizontal semicircular microtube. Applied Thermal Engineering, 2019, 154: 380–392.
[80] Yang F.Y., Wang K., Liu T., Wang Y.Q., Liu Z.C., Convection heat transfer of CO2 at supercritical pressures in microtubes. Chemical Engineering & Technology, 2013, 36(12): 2051–2056.
[81] Zhao Z.X., Che D.F., Numerical investigation of conjugate heat transfer to supercritical CO2 in a vertical tube-in-tube heat exchanger. Numerical Heat Transfer Part a-Applications, 2015, 67(8): 857–882.
[82] Yang M., Numerical study of the heat transfer to carbon dioxide in horizontal helically coiled tubes under supercritical pressure. Applied Thermal Engineering, 2016, 109: 685–696.
[83] Zhong S.G., Ren Y., Wu W.D., Yang Y.Y., Yang Q.G., Numerical study on the local heat transfer characteristic of supercritical CO2 in semicircular/circular channel under cooling condition. International Journal of Heat and Mass Transfer, 2023, 209: 124098.
[84] Sun F., Xie G.N., Song J., Li S.L., Markides C.N., Thermal characteristics of in-tube upward supercritical CO2 flows and a new heat transfer prediction model based on artificial neural networks (ANN). Applied Thermal Engineering, 2021, 194: 117067.
[85] Zhu B.G., Zhu X.J., Xie J., Xu J.L., Liu H., Heat transfer prediction of supercritical carbon dioxide in vertical tube based on artificial neural networks. Journal of Thermal Science, 2021, 30(5): 1751–1767.
[86] Yu Z.Y., Tao L.R., Huang L.H., Wang D., Zhang S.H., Yu Q., Li M., Numerical investigation on cooling heat transfer and flow characteristics of supercritical CO2 in spirally fluted tube at various inclination angles. International Journal of Thermal Sciences, 2021, 166: 106916.
[87] Yang C.Y., Xu J.L., Wang X.D., Zhang W., Mixed convective flow and heat transfer of supercritical CO2 in circular tubes at various inclination angles. International Journal of Heat and Mass Transfer, 2013, 64: 212–223.
[88] Yan W.M., Ye Y.J., Kasaeian A., Fluid flow and thermal characteristics in inclined tubes with transcritical carbon dioxide as working fluid. International Communications in Heat and Mass Transfer, 2018, 91: 84–89.
[89] Wang J., Jishun L.I., Gurgenci H., Veeraragavan A., Hooman K., Computational investigations on convective flow and heat transfer of turbulent supercritical CO2 cooled in large inclined tubes. Applied Thermal Engineering, 2019, 159: 113922.
[90] Liu Z.B., He Y.L., Yang Y.F., Fei J.Y., Experimental study on heat transfer and pressure drop of supercritical CO2 cooled in a large tube. Applied Thermal Engineering, 2014, 70(1): 307–315.
[91] Hao J.H., Ju C.Z., Li C., Tian L., Ge Z.H., Du X.Z., Comparison and evaluation of supercritical CO2 cooling performance in horizontal tubes with variable cross-section by field synergy theory. International Journal of Energy Research, 2022, 46(10): 14133–14144.
[92] Xu X.X., Zhang Y.D., Liu C., Zhang S.J., Dang C.B., Experimental investigation of heat transfer of supercritical CO2 cooled in helically coiled tubes based on exergy analysis. International Journal of Refrigeration-Revue Internationale Du Froid, 2018, 89: 177–185.
[93] Xu X.X., Liu C., Dang C.B., Wu Y.Y., Liu X.X., Experimental investigation on heat transfer characteristics of supercritical CO2 cooled in horizontal helically coiled tube. International Journal of Refrigeration-Revue Internationale Du Froid, 2016, 67: 190–201.
[94] Jaddoa A.A., Convection heat transfer analysis with flow resistance for mini-helically coiled tubes at supercritical pressures experimentally. International Journal of Heat and Technology, 2021, 39(3): 817–824.
[95] Yang M., Li G.R., Liao F., Li J.D., Zhou X., Numerical study of characteristic influence on heat transfer of supercritical CO2 in helically coiled tube with non-circular cross section. International Journal of Heat and Mass Transfer, 2021, 176: 121511.
[96] Liu M., Jiang X.Y., Fang Y.F., Guo M.L., Ding C., Numerical investigation on convective heat transfer of supercritical carbon dioxide in a mini tube considering entrance effect. Journal of Thermal Science, 2021, 30(6): 1986–2001.
[97] Cai H.F., Liang S.Q., Guo C.H., Wang T., Zhu Y.M., Jiang Y.Y., Numerical investigation on heat transfer of supercritical carbon dioxide in the microtube heat exchanger at low Reynolds numbers. International Journal of Heat and Mass Transfer, 2020, 151: 119448.
[98] Cai H.F., Jiang Y.Y., Wang T., Liang S.Q., Zhu Y.M., Experimental investigation on convective heat transfer and pressure drop of supercritical CO2 and water in microtube heat exchangers. International Journal of Heat and Mass Transfer, 2020, 163: 120443.
[99] Cao X.L., Rao Z.H., Liao S.M., Laminar convective heat transfer of supercritical CO2 in horizontal miniature circular and triangular tubes. Applied Thermal Engineering, 2011, 31(14–15): 2374–2384.
[100] Xu R.N., Luo F., Jiang P.X., Experimental research on the turbulent convection heat transfer of supercritical pressure CO2 in a serpentine vertical mini tube. International Journal of Heat and Mass Transfer, 2015, 91: 552–561.
[101] Peng R.F., Lei X.L., Guo Z.M., Wang Y.H., Li H.X., Zhou X., Forced convective heat transfer of supercritical carbon dioxide in mini-channel under low mass fluxes. International Journal of Heat and Mass Transfer, 2022, 182: 121919.
[102] Zhang H.Y., Guo J.F., Huai X.L., Cheng K.Y., Cui X.Y., Studies on the thermal-hydraulic performance of zigzag channel with supercritical pressure CO2. The Journal of Supercritical Fluids, 2019, 148: 104–115.
[103] Wen Z.X., Lv Y.G., Li Q., Comparative study on flow and heat transfer characteristics of sinusoidal and zigzag channel printed circuit heat exchangers. Science China-Technological Sciences, 2020, 63(4): 655–667.
[104] Tu Y., Zeng Y., Numerical study on flow and heat transfer characteristics of supercritical CO2 in zigzag microchannels. Energies, 2022, 15(6): 2099.
[105] Jin F., Chen D.Q., Hu L., Huang Y.P., Bu S.S., Study on thermal-hydraulic characteristics of CO2-water printed circuit heat exchanger with different structural parameters. Thermal Science and Engineering Progress, 2022, 34: 101430.
[106] Wang Q.Q., Huang X., Xu B., Chen Q.X., Wang H.J., Numerical study on heat transfer and flow characteristics of supercritical CO2 in printed circuit heat exchangers with zigzag channels. Heat Transfer Engineering, 2023, 44 (21–22): 2127–2143.
[107] Wen Z.X., Lv Y.G., Li Q., Zhou P., Numerical study on heat transfer behavior of wavy channel supercritical CO2 printed circuit heat exchangers with different amplitude and wavelength parameters. International Journal of Heat and Mass Transfer, 2020, 147: 118922.
[108] Chen W., Yang Z.N., Yang L., Chyu M.K., Numerical investigation of heat transfer and flow characteristics of supercritical CO2 in U-duct. Applied Thermal Engineering, 2018, 144: 532–539.
[109] Wang G., Li Y.H., Jiang T.L., Chen Z.S., Effect study of super-critical CO2 parameters on heat transfer performance of U-shaped double-pipe heat exchanger. Case Studies in Thermal Engineering, 2022, 30: 101762.
[110] Tu Y., Zeng Y., Flow and heat transfer characteristics study of supercritical CO2 in horizontal semicircular channel for cooling process. Case Studies in Thermal Engineering, 2020, 21: 100691.
[111] Zhang H.Y., Guo J.F., Huai X.L., Cui X.Y., Thermodynamic performance analysis of supercritical pressure CO2 in tubes. International Journal of Thermal Sciences, 2019, 146: 106102.
[112] Khalesi J., Sarunac N., Numerical analysis of flow and conjugate heat transfer for supercritical CO2 and liquid sodium in square microchannels. International Journal of Heat and Mass Transfer, 2019, 132: 1187–1199.
[113] Liu G.X., Huang Y.P., Wang J.F., Leung L.H.K., Heat transfer of supercritical carbon dioxide flowing in a rectangular circulation loop. Applied Thermal Engineering, 2016, 98: 39–48.
[114] Cui X.Y., Guo J.F., Huai X.L., Zhang H.Y., Cheng K.Y., Zhou J.Z., Numerical investigations on serpentine channel for supercritical CO2 recuperator. Energy, 2019, 172: 517–530.
[115] Li Y., Sun F., Xie G.N., Sunden B., Qin J., Numerical investigation on flow and thermal performance of supercritical CO2 in horizontal cylindrically concaved tubes. Applied Thermal Engineering, 2019, 153: 655–668.
[116] Eter A., Groeneveld D., Tavoularis S., Convective heat transfer in supercritical flows of CO2 in tubes with and without flow obstacles. Nuclear Engineering and Design, 2017, 313: 162–176.
[117] Zhang H.Y., Guo J.F., Cui X.Y., Huai X.L., Performance analysis of supercritical pressure CO2 in several enhanced tubes with non-uniform heat flux. Applied Thermal Engineering, 2020, 180: 115823.
[118] Mao S., Zhou T., Wei D., Liu W.B., Xue C.H., Numerical investigation on flow and thermal performance of supercritical CO2 in a horizontal ribbed tube. The Journal of Supercritical Fluids, 2022, 187: 105644.
[119] Liu Y., Dong Y., Xie L.T., Zhang C.Z., Xu C., Heat transfer enhancement of supercritical CO2 in solar tower receiver by the field synergy principle. Applied Thermal Engineering, 2022, 212: 118479.
[120] Duan H.Y., Xie G.N., Ma Y., Li S.L., Sunden B., Mitigation of heat transfer deterioration of supercritical CO2 vertical tube upward flows by introducing truncated-ribs in helical-like distribution. ASME Journal of Heat and Mass Transfer, 2023, 145(5): 051901.
[121] Bouzgarrou S., Akermi M., Nasr S., Aouaini F., Khan A.H., Slimi K., Khan N.A., Zahmatkesh S., CO2 storage in porous media unsteady thermosolutal natural convection-Application in deep saline aquifer reservoirs. International Journal of Greenhouse Gas Control, 2023, 125: 103890.
[122] Jiang P.X., Shi R.F., Zhao C.R., Xu Y.J., Experimental and numerical study of convection heat transfer of CO2 at supercritical pressures in vertical porous tubes. International Journal of Heat and Mass Transfer, 2008, 51(25–26): 6283–6293.
[123] Liu Z.B., He Y.L., Qu Z.G., Tao W.Q., Experimental study of heat transfer and pressure drop of supercritical CO2 cooled in metal foam tubes. International Journal of Heat and Mass Transfer, 2015, 85: 679–693.
[124] Wang P., Li M.X., Dai B.M., Wang Q.F., Ma Y.T., Liu X.T., Experimental study on supercritical heat transfer characteristics of CO2/R41 mixture in microchannel. Applied Thermal Engineering, 2021, 199: 117465.
[125] Lin D.T.W., Hsieh J.C., Shih B.Y., The optimization of geothermal extraction based on supercritical CO2 porous heat transfer model. Renewable Energy, 2019, 143: 1162–1171.
[126] Xu X.Y., Ma T., Li L., Zeng M., Chen Y.T., Huang Y.P., Wang Q.W., Optimization of fin arrangement and channel configuration in an airfoil fin PCHE for supercritical CO2 cycle. Applied Thermal Engineering, 2014, 70(1): 867–875.
[127] Luo X.B., Yang Z.N., Chen W., Chyu M.K., Effect of lattice structures on heat transfer deterioration of supercritical CO2 in rectangle channels. Numerical Heat Transfer Part a-Applications, 2020, 77(11): 931–950.
[128] Fu Q.M., Ding J., Lao J.W., Wang W.L., Lu J.F., Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage. Applied Energy, 2019, 247: 594–604.
[129] Guo J.F., Huai X.L., Performance analysis of printed circuit heat exchanger for supercritical carbon dioxide. Journal of Heat Transfer-Transactions of the ASME, 2017, 139(6): 061801.
[130] Lao J.W., Fu Q.M., Wang W.L., Ding J., Lu J.F., Heat transfer characteristics of printed circuit heat exchanger with supercritical carbon dioxide and molten salt. Journal of Thermal Science, 2021, 30(3): 880–891.
[131] Kwon J.S., Son S., Heo J.Y., Lee J.I., Compact heat exchangers for supercritical CO2 power cycle application. Energy Conversion and Management, 2020, 209: 112666.
[132] Zhou Y.L., Yin D.D., Guo X.T., Flow and heat transfer performance of molten salt and CO2-based mixtures in printed circuit heat exchangers. Applied Thermal Engineering, 2023, 224: 120104.
[133] Pei B.B., Chen Z.T., Li F.B., Bai B.F., Flow and heat transfer of supercritical CO2 in the honeycomb ultra-compact plate heat exchanger. The Journal of Supercritical Fluids, 2019, 148: 1–8.
[134] Searle M., Black J., Straub D., Robey E., Yip J., Ramesh S., Roy A., Sabau A.S., Mollot D., Heat transfer coefficients of additively manufactured tubes with internal pin fins for supercritical carbon dioxide cycle recuperators. Applied Thermal Engineering, 2020, 181: 116030.
[135] Shi H.Y., Li M.J., Wang W.Q., Qiu Y., Tao W.Q., Heat transfer and friction of molten salt and supercritical CO2 flowing in an airfoil channel of a printed circuit heat exchanger. International Journal of Heat and Mass Transfer, 2020, 150: 119006.
[136] Ding M., Liu J., Cheng W.L., Huang W.X., Liu Q.N., Yang L., Liu S.Y., An adaptive flow path regenerator used in supercritical carbon dioxide Brayton cycle. Applied Thermal Engineering, 2018, 138: 513–522.
[137] Zhao Z.X., Lin Y.S., Yao S.W., Zhang K.L., Wang W., Liu Z.Y., Xiao Q., Numerical investigation on heat transfer to supercritical CO2 in rolling motion. Annals of Nuclear Energy, 2017, 106: 97–110.
[138] Wang W.Y., Ye Z.L., Yin X., Song Y.L., Cui C., Cao F., Theoretical and experimental studies for a transcritical CO2 heat pump with spirally fluted tube gas cooler. Applied Thermal Engineering, 2024, 236: 121414.
[139] Li X., Tang G., Fan Y., Yang D., A performance recovery coefficient for thermal-hydraulic evaluation of recuperator in supercritical carbon dioxide Brayton cycle. Energy Conversion and Management, 2022, 256: 115393.
[140] Xu P., Zhou T., Fu Z.G., Mao S., Chen J., Jiang Y., Heat transfer performance of liquid lead-bismuth eutectic and supercritical carbon dioxide in double D-type straight channel. Applied Thermal Engineering, 2023, 219: 119484.
[141] Liu G.X., Huang Y.P., Wang J.F., Lv F., Leung L.K.H., Experiments on the basic behavior of supercritical CO2 natural circulation. Nuclear Engineering and Design, 2016, 300: 376–383.
[142] Wang J.M., Chen X., Zhang C., Gu M.Y., Chu H.Q., Numerical investigation of heat transfer characteristics of supercritical CO2 tube in combustion chamber of coal-fired boiler. Journal of Thermal Science, 2019, 28(3): 442–453.
[143] Olumayegun O., Wang M.H., Oko E., Thermodynamic performance evaluation of supercritical CO2 closed Brayton cycles for coal-fired power generation with solvent-based CO2 capture. Energy, 2019, 166: 1074–1088.
[144] Wang K., Zhang Z.D., Li M.J., Min C.H., A coupled optical-thermal-fluid-mechanical analysis of parabolic trough solar receivers using supercritical CO2 as heat transfer fluid. Applied Thermal Engineering, 2021, 183: 116154.
[145] Abas N., Kalair A.R., Seyedmahmoudian M., Naqvi M., Campana P.E., Khan N., Dynamic simulation of solar water heating system using supercritical CO2 as mediating fluid under sub-zero temperature conditions. Applied Thermal Engineering, 2019, 161: 114152.
[146] Jacob F., Rolt A.M., Sebastiampillai J.M., Sethi V., Belmonte M., Cobas P., Performance of a supercritical CO2 bottoming cycle for aero applications. Applied Sciences-Basel, 2017, 7(3): 255.
[147] Entler S., Syblik J., Dostal V., Stepanek J., Zacha P., Optimization of the supercritical CO2 power conversion system based on the net efficiency under conditions of the pulse-operated fusion power reactor DEMO. Applied Thermal Engineering, 2021, 194: 116884.
[148] Wu P., Gao C.T., Huang Y.P., Zhang D., Shan J.Q., Supercritical CO2 Brayton cycle design for small modular reactor with a thermodynamic analysis solver. Science and Technology of Nuclear Installations, 2020, 2022: 1–16.
[149] Vesely L., Syblik J., Entler S., Stepanek J., Zacha P., Dostal V., Optimization of supercritical CO2 power conversion system with an integrated energy storage for the pulsed DEMO. IEEE Transactions on Plasma Science, 2020, 48(6): 1715–1720.
[150] Meng N., Li T.L., Wang J.Q., Kong X.F., Jia Y.N., Liu Q.H., Qin H.S., Structural improvement and thermodynamic optimization of a novel supercritical CO2 cycle driven by hot dry rock for power generation. Energy Conversion and Management, 2021, 235: 114014.
[151] Manente G., Lazzaretto A., Innovative biomass to power conversion systems based on cascaded supercritical CO2 Brayton cycles. Biomass and Bioenergy, 2014, 69: 155–168.