[1] Yin H.B., Ding J., Yang X., Novel medium-high temperature thermal energy storage technology and its developing trend. Energy Conservation Technology, 2014, 32: 295–299.
[2] Shahabuddin M., Alim M.A., Alam T., et al., A critical review on the development and challenges of concentrated solar power technologies. Sustainable Energy Technologies and Assessments, 2021, 47: 101434.
[3] Alva G., Lin Y., Fang G., An overview of thermal energy storage systems. Energy, 2018, 144: 341–378.
[4] Ding W., Bauer T., Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering, 2021, 7: 334–347.
[5] Liang H., Huang X., Wang F., Cheng Z., Dong Y., Multiple nanoparticles coupling strategy for enhancing optical filter performance of spectral splitter used in photovoltaic/thermal system. Journal of Thermal Science, 2024, 33(1): 368–382.
[6] Saranprabhu M.K., Rajan K.S., Enhancement of solid-phase thermal conductivity and specific heat of solar salt through addition of MWCNT: new observations and implications for thermal energy storage. Applied Nanoscience, 2019, 9: 2117–2126.
[7] Li Y., Chen X., Wu Y. T., et al., Experimental study on the effect of SiO2 nanoparticle dispersion on the thermophysical properties of binary nitrate molten salt. Solar Energy, 2019, 183: 776–781.
[8] Zhang Z., Yuan Y., Ouyang L., et al., Enhanced thermal properties of Li2CO3-Na2CO3-K2CO3 nanofluids with nanoalumina for heat transfer in high-temperature CSP systems. Journal of Thermal Analysis and Calorimetry, 2017, 128: 1783–1792.
[9] Shin D., Banerjee D., Enhancement of specific heat capacity of high-temperature silica-nanofluids synthesized in alkali chloride salt eutectics for solar thermal-energy storage applications. International Journal of Heat and Mass Transfer, 2011, 54: 1064–1070.
[10] Hemmat Esfe M., Afrand M., Karimipour A., et al., An experimental study on thermal conductivity of MgO nanoparticles suspended in a binary mixture of water and ethylene glycol. International Communications in Heat and Mass Transfer, 2015, 67: 173–175.
[11] Angayarkanni S.A., Philip J., Review on thermal properties of nanofluids: Recent developments. Advances in Colloid and Interface Science, 2015, 225:146–176.
[12] Ni H., Wu J., Sun Z., et al., Insight into the viscosity enhancement ability of Ca(NO3)2 on the binary molten nitrate salt: A molecular dynamics simulation study. Chemical Engineering Journal, 2019, 377: 120029.
[13] Ding J., Pan G., Du L., et al., Theoretical prediction of the local structures and transport properties of binary alkali chloride salts for concentrating solar power. Nano Energy, 2017, 39: 380–389.
[14] Xie W., Ding J., Pan G., et al., Heat and mass transportation properties of binary chloride salt as a high-temperature heat storage and transfer media. Solar Energy Materials and Solar Cells, 2020, 209: 110415.
[15] Lu J.F., Yang S.F., Rong Z.Z., et al., Thermal properties of KCl-MgCl2 eutectic salt for high-temperature heat transfer and thermal storage system. Solar Energy Materials and Solar Cells, 2021, 228: 111130.
[16] Rao Z., Ye K., Wang H., et al., Effects of interface layer on the thermophysical properties of solar salt-SiO2 nanofluids: A molecular dynamics simulation. International Journal of Energy Research, 2021, 45: 13323–13337.
[17] Yu Y., Zhao C., Tao Y., et al., Superior thermal energy storage performance of NaCl-SWCNT composite phase change materials: A molecular dynamics approach. Applied Energy, 2021, 209: 116799.
[18] Wei X., Song M., Wang W., et al., Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage. Applied Energy, 2015, 156: 306–310.
[19] Wei X., Yin Y., Qin B., et al., Preparation and enhanced thermal conductivity of molten salt nanofluids with nearly unaltered viscosity. Renewable Energy, 2020, 145: 2435–2444.
[20] Plimpton S., Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117: 1–19.
[21] Scott R., Computer simulation of liquids. Mathematics of Computation, 1991, 57: 442–444.
[22] Melchionna S., Ciccotti G., Lee Holian B., Hoover NPT dynamics for systems varying in shape and size. Molecular Physics, 1993, 78: 533–544.
[23] Adrián C., Santos G., ngel C., et al., Molten salts for sensible thermal energy storage: A review and an energy performance analysis. Energies, 2021, 14: 1197.
[24] Tosi M.P., Fumi F.G., Ionic sizes and born repulsive parameters in the NaCl-type alkali halides—II: The generalized Huggins-Mayer form. Journal of Physics and Chemistry of Solids, 1964, 25: 45–52.
[25] Li R., Liang F., Ding J., et al., Molecular dynamics simulations of thermophysical properties enhancement of chloride molten salt based nanofluid. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2022, 61(06): 129–135.
[26] Zhao L., Liu L., Sun H., Semi-ionic model for metal oxides and their interfaces with organic molecules. Journal of Physical Chemistry C, 2007, 111: 10610– 10617.
[27] Cygan R.T., Liang J.J., Kalinichev A.G., Molecular models of hydroxide, oxyhydroxide, and clay phases and the development of a general force field. The Journal of Physical Chemistry B, 2004, 108: 1255–1266.
[28] Martinez L., Andrade R., Birgin E.G., et al., PACKMOL: a package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry, 2009, 30: 2157–2164.
[29] Lide D.R., Handbook of chemistry and physics. CRC Press LLC, 2004.
[30] Hu Y.W., He Y.R., Zhang Z.D., et al., Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications. Energy Conversion and Management, 2017, 142: 366– 373.
[31] Pan G.-C., Ding J., Wang W., et al., Molecular simulations of the thermal and transport properties of alkali chloride salts for high-temperature thermal energy storage. International Journal of Heat and Mass Transfer, 2016, 103: 417–427.
[32] Jin L., Noraldeen S.F.M., Zhou L., et al., Molecular study on the role of solid/liquid interface in specific heat capacity of thin nanofluid film with different configurations. Fluid Phase Equilibria, 2021, 548: 113188.
[33] Li Z., Cui L., Li B., et al., Mechanism exploration of the enhancement of thermal energy storage in molten salt nanofluid. Physical Chemistry Chemical Physics, 2021, 23: 13181–13189.
[34] Ding J., Huang C., Du L., et al., Thermal conductivity of liquid carbonate salt doped with magnesium powder. CIESC Journal, 2017, 68: 4407–4413.
[35] Müller-Plathe F., A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. The Journal of Chemical Physics, 1997, 106: 6082–6085.
[36] Kang H., Zhang Y., Yang M., et al., Molecular dynamics simulation on effect of nanoparticle aggregation on transport properties of a nanofluid. Journal of Nanotechnology in Engineering and Medicine, 2012, 3(2): 021001.
[37] Liang F., Wei X., Lu J., et al., Interplay between interfacial layer and nanoparticle dispersion in molten salt nanofluid: Collective effects on thermophysical property enhancement revealed by molecular dynamics simulations. International Journal of Heat and Mass Transfer, 2022, 196: 123305.
[38] Maxwell J.C., A treatise on electricity and magnetism. Clarendon press, 1873.
[39] Wang X., Jing D.W., Determination of thermal conductivity of interfacial layer in nanofluids by equilibrium molecular dynamics simulation. International Journal of Heat and Mass Transfer, 2019, 128: 199–207.