Flow Analysis of Tandem Blades as the Outlet Vane of a Highly Loaded Compressor

  • LUO Qiao ,
  • LUO Lei ,
  • DU Wei ,
  • YAN Han ,
  • WANG Songtao ,
  • ZHOU Xun
Expand
  • School of Energy Science and Engineering, Harbin Institute of Technology, Heilongjiang 150001, China

Online published: 2024-11-05

Supported by

This work was supported by the National Science and Technology Major Project (Nos. 2017-II-0007-0021 and P2021-AB-I-003-001), and the Heilongjiang Province Postdoctoral Special Funding (LBH-TZ2109).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

A tandem blade configuration is a significant flow control method that delays the onset of flow separation. This study numerically investigates the effects of diffusion factor and percentage pitch on the flow structure of tandem blades. Diffusion factors vary from 0.328 to 0.484. Percentage pitches change from 0.80 to 0.92. Results show that the loss coefficient increases with diffusion factor and decreases with percentage pitch. There is a hub-corner stall of the forward blade in all cases. Gap flow determines the rear blade corner separation. Varying the percentage pitch and diffusion factor changes the momentum distribution of the gap flow. Corner separation of the rear blade is inhibited as low-momentum gap fluids are involved in the passage vortex along with the hub-corner stall of the forward blade. Increasing diffusion factor causes a change in incidence at the leading edge of the rear blade, resulting in a variation at the corner separation of the rear blade. A tandem blade is compared with the reference outlet vane. The performance of the tandem blade is superior to that of the reference outlet vane in all incidences, with a 26.35% reduction in the loss coefficient and a 7.89% enhancement in the pressurization at the designed incidence. Tandem blades stall at positive incidence because of the hub-corner stall of the forward blade. The intensity of the gap flow increases with incidence, preventing corner separation of the rear blade at positive incidences.

Cite this article

LUO Qiao , LUO Lei , DU Wei , YAN Han , WANG Songtao , ZHOU Xun . Flow Analysis of Tandem Blades as the Outlet Vane of a Highly Loaded Compressor[J]. Journal of Thermal Science, 2024 , 33(6) : 2005 -2018 . DOI: 10.1007/s11630-024-2042-9

References

[1] Yue S.Y., Wang Y.G., Wang H.T., Design and optimization of tandem arranged cascade in a transonic compressor. Journal of Thermal Science, 2018, 27: 349–358. https://doi.org/10.1007/s11630-018-1013-4.
[2] Cao Z.Y., Song C., Zhang X., Gao X., Liu B., Blade lean and tip leakage flows in highly loaded compressor cascades. Journal of Thermal Science, 2021, 30: 1388–1405. https://doi.org/10.1007/s11630-021-1486-4.
[3] Huang S., Yang C.W., Li Z.L., Han G., Zhao S.F., Lu X.G., Effect of non-axisymmetric end wall on a highly loaded compressor cascade in multi-conditions. Journal of Thermal Science, 2021, 30: 1363–1375. https://doi.org/10.1007/s11630-021-1448-x.
[4] Zhang J., Du J., Zhang M., Chen Z., Zhang H.W., Nie C.Q., Aerodynamic performance improvement of a highly loaded compressor airfoil with coanda jet flap. Journal of Thermal Science, 2022, 31: 151–162. https://doi.org/10.1007/s11630-022-1564-2.
[5] Zhu W., Cai L., Wang S.T., Wang Z.Q., Numerical investigation of circumferential groove casing treatment in a highly-loaded low-reaction transonic compressor rotor. Journal of Thermal Science, 2020, 29: 916–927. https://doi.org/10.1007/s11630-019-1180-y.
[6] Cao Z.Y., Song C., Zhang X., Gao X., Liu B., Computational study on the boundary layer suction effects in the supersonic compressor flow with a bowed blade. Journal of Thermal Science, 2022, 31: 511–528. https://doi.org/10.1007/s11630-022-1582-0.
[7] Zhao X.H., Li Y.H., Wu Y., Li J., Investigation of endwall flow behavior with plasma flow control on a highly loaded compressor cascade. Journal of Thermal Science, 2012, 21: 295–301. https://doi.org/10.1007/s11630-012-0547-0.
[8] Babu S., Chatterjee P., Pradeep A.M., Transient nature of secondary vortices in an axial compressor stage with a tandem rotor. Physics of Fluids, 2022, 34(6): 065125. https://doi.org/10.1063/5.0092226.
[9] Liu B.J., Zhang C.H., An G.F., Fu D., Yu X.J., Using tandem blades to break loading limit of highly loaded axial compressors. Chinese Journal of Aeronautics, 2022, 35(4): 165–175. https://doi.org/10.1016/j.cja.2021.07.031.
[10] Ghazanfari B., Nili-Ahmadabadin M., Torabi-Farsani A., Noorsalehi M.H., Numerical study of camber and stagger angleeffects on the aerodynamic performance oftandem-blade cascades. Propulsion and Power Research, 2018, 7(1): 30–42. 
https://doi.org/10.1016/j.jppr.2018.02.003.
[11] Eshraghi H., Boroomand M., Tousi A.M., Fallah M.T., Mohammadi A., The effect of variable stator on performance of a highly loaded tandem axial flow compressor stage. Journal of Thermal Science, 2016, 25: 223–230. https://doi.org/10./s11630-016-0854-y.
[12] Böhle M., Frey T., Numerical and experimental investigations of the three-dimensional-flow structure of tandem cascades in the sidewall region. Journal of Fluids Engineering, 2014, 136(7): 071102. https://doi.org/10.1115/1.4026880.
[13] Trehan S., Roy B., Gap optimization for tandem blades in axial flow compressor/fan using computational tools. AIAA, 2007, Article ID: 2007-5024. https://doi.org/10.2514/6.2007-5024.
[14] McGlumphy J., Ng W.F., Wellborn S.R., Kempf S., Numerical investigation of tandem airfoils for subsonic axial-flow compressor blades. Journal of Turbomachinery, 2009, 131(2): 021018. https://doi.org/10.1115/1.2952366.
[15] Schneider T., Kožulović D., Flow characteristics of axial compressor tandem cascades at large off-design incidence angles. ASME paper, 2013, GT2013-94708. https://doi.org/10.1115/GT2013-94708.
[16] Ju Y.P., Zhang C.H., Multi-objective optimization design method for tandem compressor cascade at design and off design conditions. ASME paper, 2010, GT2010-22655. https://doi.org/10.1115/GT2010-22655.
[17] McGlumphy J., Ng W.F., Wellborn S.R., Kempf S., 3D numerical investigation of tandem airfoils for a core compressor rotor. Journal of Turbomachinery, 2010, 132 (3): 031009. https://doi.org/10.1115/1.3149283.
[18] Mohsen M., Owis F.M., Hashim A.A., The impact of tandem rotor blades on the performance of transonic axial compressors. Aerospace Science and Technology, 2017, 67: 237–248. https://doi.org/10.1016/j.ast.2017.04.019.
[19] Hoeger M., Baier R.D., Fischer S., Neudorfer J., High turning compressor tandem cascade for high subsonic flows, part 1: Aerodynamic design. AIAA, 2011, Article ID: 2011-5601. https://doi.org/10.2514/6.2011-5601.
[20] Mueller L., Kozulovic D., Wulff D., Fischer S., Stark U., High turning compressor tandem cascade for high subsonic flows-part 2: numerical and experimental investigations. AIAA, 2011, Article ID: 2011-5602. https://doi.org/10.2514/6.2011-5602.
[21] Heinrich A, Tiedemann C, Peitsch D. Experimental investigations of secondary flow development around tandem vanes in a 2D linear stator compressor cascade. Proceedings of 11th European Conference on Turbomachinery Fluid dynamics & Thermodynamics, 2015, No. ETC2015-237.
[22] Heinrich A., Tiedemann C., Peitsch D., Experimental investigations of the aerodynamics of highly loaded tandem vanes in a high-speed stator cascade. ASME paper, 2017, Article ID: GT2017-63235. https://doi.org/10.1115/GT2017-63235.
[23] Heinrich A., Peitsch D., Recent insights into the flow topology around highly loaded tandem vanes. Proceedings of GPPS Forum 19 Global Power and Propulsion Society, Beijing, 16th-18th September, 2019.
[24] Schluer C., Böhle M., Cagna M., Numerical investigation of the secondary flows and losses in a high-turning tandem compressor cascade. 8th European Conference on Turbomachinery: Fluid Dynamics and Thermodynamics, 2009.
[25] Frey T., Böhle M., Flow structure of tandem cascades in the region of the sidewalls. ASME paper, 2013, Article ID: FEDSM2013-16034. https://doi.org/10.1115/FEDSM2013-16034.
[26] Hertel C., Bode C., Kožulović D., Schneider T., Investigations on aerodynamic loading limits of subsonic compressor tandem cascades: end wall flow. ASME paper, 2014, Article ID: GT2014-26978. https://doi.org/10.1115/GT2014-26978.
[27] Liu B.J., Yu X.J., An G.F., Tao Y., Zhou A.Y., Li L.L., Aerodynamic design and optimization of tandem blades. Aeroengine, 2021, 47(4): 37–50. https://doi.org/10.13477/j.cnki.aeroengine.2021.04.005.
[28] Zhang L.X., Wang S.T., Zhu W., Application of endwall contouring in a high-subsonic tandem cascade with endwall boundary layer suction. Aerospace Science and Technology, 2019, 84: 245–256. https://doi.org/10.1016/j.ast.2018.08.041.
[29] Tesch A., Ortmanns J., An experimental investigation of a tandem stator flow characteristic in a low speed axial research compressor. ASME paper, 2014, Article ID: GT2014-26104. https://doi.org/10.1115/GT2014-26104.
[30] Eckel J., Heinrich A., Janke C., Ortmanns J., Peitsch D., 3d numerical and experimental investigation of high turning compressor tandem cascade. Conference: Deutscher Luft-und Raumfahrtkongress, 2016.
[31] Lieblein S., Johnsen I.A., Resume of transonic- compressor research at NACA lewis laboratory. Journal for Engineering for Power, 1961, 83(3): 219–232. https://doi.org/10.1115/1.3673177.
[32] Lei V.M., Spakovszky Z.S., Greitzer E.M., A criterion for axial compressor hub corner stall. Journal of Turbomachinery, 2008, 130(3): 031006. https://doi.org/10.1115/1.2775492.
[33] Wang M.Y., Lu X.G., Zhao S.F., Zhang Y.F., Numerical investigations of vortex dynamics and loss generation in the corner separation region of a high subsonic compressor blade. Physics of Fluids, 2023, 35(2): 025104. https://doi.org/10.1063/5.0134670.
Outlines

/