[1] Alimonti G., Mariani L., Prodi F., Ricci R.A., A critical assessment of extreme events trends in times of global warming. The European Physical Journal Plus, 2022, 137(1): 1–20.
[2] Shuai C., Shen L., Jiao L., Wu Y., Tan Y., Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Applied Energy, 2017, 187: 310–325.
[3] Rao S., Riahi K., The role of non-CO2 greenhouse gases in climate change mitigation: long-term scenarios for the 21st century. The Energy Journal, 2006, 27(3): 177–200.
[4] Savitha D.C., Ranjith P.K., Talawar B., Rana Pratap Reddy N., Refrigerants for sustainable environment–a literature review. International Journal of Sustainable Energy, 2022, 41(3): 235–256.
[5] Heredia-Aricapa Y., Belman-Flores J.M., Mota-Babiloni A., Serrano-Arellano J., García-Pabón J.J., Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration, 2020, 111: 113–123.
[6] Kumma N., Kruthiventi S.S.H., Thermodynamic performance and flammability studies of hydrocarbon based low global warming potential refrigerant mixtures. Journal of Thermal Science, 2022, 31(5): 1487–1502.
[7] Aprea C., Greco A., Maiorino A., HFOs and their binary mixtures with HFC134a working as drop-in refrigerant in a household refrigerator: Energy analysis and environmental impact assessment. Applied Thermal Engineering, 2018, 141: 226–233.
[8] Yana M.S., Domanski P., Low-GWP refrigerants status and outlook. USDOE Office of Energy Efficiency and Renewable Energy, United States, 2022.
[9] Shuai C., Shen L., Jiao L., Wu Y., Tan Y., Identifying key impact factors on carbon emission: Evidences from panel and time-series data of 125 countries from 1990 to 2011. Applied Energy, 2017, 187: 310–325.
[10] Heath E.A., Amendment to the Montreal protocol on substances that deplete the ozone layer (Kigali amendment). International Legal Materials, 2017, 56(1): 193–205.
[11] Velders G.J., Fahey D.W., Daniel J.S., McFarland M., Andersen S.O., The large contribution of projected HFC emissions to future climate forcing. Proceedings of the National Academy of Sciences, 2009, 106(27): 10949–10954.
[12] ODS Destruction in the United States and Abroad. https://www.epa.gov/sites/default/files/2018-03/documents/ods-destruction-in-the-us-and-abroad_feb2018.pdf/, 2022 (accessed on 8 November 2022).
[13] Dai X., An Q., Xu Y., Shi L., Review of waste refrigerant destruction methods. CIESC Journal, 2021, 72: 1–6.
[14] Sheraz M., Anus A., Le V.C.T., Swamidoss C.M.A., Kim E.K., Kim S., A comprehensive review of contemporary strategies and approaches for the treatment of HFC‐134a. Greenhouse Gases: Science and Technology, 2021, 11(5): 1118–1133.
[15] Iizuka A., Ishizaki H., Mizukoshi A., Noguchi M., Yamasaki A., Yanagisawa Y., Simultaneous decomposition and fixation of F-gases using waste concrete. Industrial & Engineering Chemistry Research, 2011, 50(21): 11808–11814.
[16] Jeong S., Sudibya G.L., Jeon J.K., Kim Y.M., Swamidoss C.M.A., Kim S., The use of a γ-Al2O3 and MgO mixture in the catalytic conversion of 1, 1, 1, 2-tetrafluoroethane (HFC-134a). Catalysts, 2019, 9(11): 901.
[17] Andrew Swamidoss C.M., Sheraz M., Anus A., Jeong S., Park Y.K., Kim Y.M., Kim S., Effect of Mg/Al2O3 and calcination temperature on the catalytic decomposition of HFC-134a. Catalysts, 2019, 9(3): 270.
[18] Mi T., Han J., He X., Qin L., Investigation of HFC-134a decomposition by combustion and its kinetic characteristics in a laboratory scale reactor. Environment Protection Engineering, 2015, 41(4): 143–150.
[19] Roh S.A., Kim W.H., Jung D.S., Hong B.K., Thermal destruction of HFC-134a in pilot-, and full-scale gasification systems. Journal of the Energy Institute, 2019, 92(6): 1842–1851.
[20] Zhang H., Liu C., Xu X., Li Q., Mechanism of thermal decomposition of HFO-1234yf by DFT study. International Journal of Refrigeration, 2017, 74: 399–411.
[21] Pu Y., Liu C., Li Q., Xu X., Huo E., Pyrolysis mechanism of HFO-1234yf with R32 by ReaxFF MD and DFT method. International Journal of Refrigeration, 2020, 109: 82–91.
[22] Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Fox D.J., Gaussian 09. Gaussian, Inc.: Wallingford CT, 2009.
[23] Alecu I.M., Zheng J., Zhao Y., Truhlar D.G., Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. Journal of Chemical Theory and Computation, 2010, 6(9): 2872–2887.
[24] Sharma S., Abeywardane K., Goldsmith C.F., Theory-based mechanism for fluoromethane combustion I: Thermochemistry and abstraction reactions. The Journal of Physical Chemistry A, 2023, 127(6): 1499–1511.
[25] Jia W., Liu M., Lang X., Hu C., Li J., Zhu Z., Catalytic dehydrofluorination of 1,1,1,2-tetrafluoroethane to synthesize trifluoroethylene over a modified NiO/Al2O3 catalyst. Catalysis Science & Technology, 2015, 5(6): 3103–3107.
[26] Han T.U., Yoo B.S., Kim Y.M., Hwang B., Sudibya G.L., Park Y.K., Kim S., Catalytic conversion of 1,1,1,2-tetrafluoroethane (HFC-134a). Korean Journal of Chemical Engineering, 2018, 35(8): 1611–1619.