[1] Ewald B., Wind tunnel wall correction. AGARD-AG-336, Neuilly-SurSeine, France, 1998.
[2] Xue X., Zhou X., Liu X., et al., Investigation on pitch-wise non-uniform and inflecting inlet flow of low-speed plane cascade. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 2016, Paper No: GT2016-56934.
[3] Cai M., Gao L., Li H., et al., Flow quality improvement of the wind tunnel testing for a highly-loaded compressor cascade at high incidence. International Journal of Turbo & Jet-Engines, 2023, 40(s1): s87–s99. DOI: 10.1515/tjj-2021-0028
[4] Corriveau D., Sjolander S.A., Impact of flow quality in transonic cascade wind tunnels: measurements in an HP turbine cascade. 23rd Congress of International Council of the Aeronautical Sciences, Toronto, Canada, 2002, Paper: ICAS 2002-5.11.4.
[5] Wilcox D.C., Turbulence modeling for CFD, third ed., DCW Industries, 2006.
[6] Parish E.J., Duraisamy K., A paradigm for data-driven predictive modeling using field inversion and machine learning. Journal of Computational Physics, 2016, 305: 758–774.
[7] Li Z., Zhang H., Bailey S.C.C., et al., A data-driven adaptive Reynolds-averaged Navier-Stokes k-ω model for turbulent flow. Journal of Computational Physics, 2017, 345: 111–131.
[8] Duraisamy K., Iaccarino G., Xia H., Turbulence modeling in the age of data. Annual Review of Fluid Mechanics, 2019, 51(1): 357–377.
[9] Foures D.P.G., Dovetta N., Sipp D., et al., A data-assimilation method for Reynolds-averaged Navier-Stokes-driven mean flow reconstruction. Journal of Fluid Mechanics, 2014, 759: 404–431.
[10] Symon S., Dovetta N., McKeon B.J., et al., Data assimilation of mean velocity from 2D PIV measurements of flow over an idealized airfoil. Experiments in Fluids, 2017, 58(5): 61.
[11] He C., Wang P, Liu Y., Data assimilation for turbulent mean flow and scalar fields with anisotropic formulation. Experiments in Fluids, 2021, 62(5): 117.
[12] Kato H., Obayashi S., Data assimilation for turbulent flows. 16th AIAA Non-Deterministic Approaches Conference, Maryland, USA, 2014, AIAA 2014-1177.
[13] Singh A.P., Medida S., Duraisamy K., Machine-learning- augmented predictive modeling of turbulent separated flows over air-foils. AIAA Journal, 2017, 55(7): 2215– 2227.
[14] He C., Liu Y., Gan L., A data assimilation model for turbulent flows using continuous adjoint formulation. Physics of Fluids, 2018, 30(10): 105108.
[15] Kato H., Ishiko K., Yoshizawa A., Optimization of parameter values in the turbulence model aided by data assimilation. AIAA Journal, 2016, 54(5): 1512–1523.
[16] Deng Z., He C., Liu Y., Deep neural network-based strategy for optimal sensor placement in data assimilation of turbulent flow. Physics of Fluids, 2021, 33(2): 025119.
[17] Deng Z., He C., Wen X., et al., Recovering turbulent flow field from local quantity measurement: Turbulence modeling using Ensemble-Kalman-filter-based data assimilation. Journal of Visualization, 2018, 21(6): 1043– 1063.
[18] Matsui K., Perez E., Kelly T.R., et al., Calibration of modified Spalart-Allmaras model parameters for linear compressor cascade corner flow. Journal of Thermal Science, 2022, 31(1): 163–172.
[19] Matsui K., Perez E., Kelly R.T., et al., Calibration of Spalart-Allmaras model for simulation of corner flow separation in linear compressor cascade. Journal of the Global Power and Propulsion Society, 2021, Special Issue: Data Driven Modelling and High-Fidelity Simulations, pp: 1–16. DOI: 10.33737/jgpps/135174
[20] Zhang K., Zhao Y., Wang Q., et al., Uncertainty analysis and calibration of SST turbulence model for free shear layer in cavity-ramp flow. Acta Astronautica, 2022, 192(3): 168–181.
[21] He X., Zhao F., Vahdati M., A turbo-oriented data-driven modification to the Spalart-Allmaras turbulence model. Journal of Turbomachinery, 2022, 144(12): 121007.
[22] Liu Y., Tang Y., Scillitoe A.D., et al., Modification of shear stress transport turbulence model using helicity for predicting corner separation flow in a linear compressor cascade. Journal of Turbomachinery, 2020, 142(2): 021004.
[23] Brunton S.L., Noack B.R., Koumoutsakos P., Machine learning for fluid mechanics. Annual Review of Fluid Mechanics, 2020, 52(1): 477–508.
[24] Zhou H.M., Yu K.T., Luo Q., et al., Design methods and strategies for forward and inverse problems of turbine blades based on machine learning. Journal of Thermal Science, 2022, 31(1): 82–95.
[25] Schmidt M., Lipson H., Distilling free-form natural laws from experimental data. Science, 2009, 324(5923): 81–85.
[26] Duraisamy K., Iaccarino G., Xiao H., Turbulence modeling in the age of data. Annual Review of Fluid Mechanics, 2019, 51(1): 357–377.
[27] Ling J., Kurzawski A., Templeton J., Reynolds averaged turbulence modelling using deep neural networks with embedded invariance. Journal of Fluid Mechanics, 2016, 807: 155–166.
[28] Zhao Y., Akolekar H.D., Weatheritt J., et al., RANS turbulence model development using CFD-driven machine learning. Journal of Computational Physics, 2020, 411: 109413.
[29] Mckay M.D., Beckman R.J., Conover W.J., A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 2000, 42(1): 55–61.
[30] Loh W.L., On Latin hypercube sampling. The Annals of Statistics, 1996, 24(5): 2058–2080.
[31] Herbrich R., Graepel T., Sparse modeling theory, algorithm, and applications. CRC Press, New York, 2015.
[32] Tibshirani R., Regression shrinkage and selection via the Lasso. Journal of the Royal Statistical Society: Series B, 1996, 58(1): 267–288.
[33] Zou H., The adaptive LASSO and its oracle properties. Journal of the American Statistical Association, 2006, 101(476): 1418–1429.
[34] Kingma D.P., Ba J., Adam: A method for stochastic optimization. 3rd International Conference for Learning Representations, San Diego, USA, 2015. DOI: 10.48550/arXiv.1412.6980
[35] Steinert W., Eisenberg B., Starken H., Design and testing of a controlled diffusion airfoil cascade for industrial axial flow com-pressor application. Journal of Turbomachinery, 1991, 113(4): 583–590.
[36] Dixon S.L., Hall C.A., Fluid mechanics and thermodynamics of turbomachinery, 7th ed. Butterworth-Heinemann, Oxford, 2014.
[37] Shi H., Liu B., Yu X., Polynomial-based continuous- curvature leading edge design method and its application. Journal of Aerospace Power, 2020, 35(2): 397–409.
[38] Kong Q., Du X., Qiang X., et al., Compressor airfoil optimization based on camber curvature control. Journal of Propulsion Technology, 2020, 41(8): 1710–1747.
[39] Wang Y., Wu Y., Zong H., et al., A parametric study on control authority and vorticity transport in a compressor airfoil with plasma actuation at low Reynolds number. Physics of Fluids, 2023, 35(3): 036117.
[40] Wang Y., Zhang H., Wu Y., et al., Compressor airfoil separation control using nanosecond plasma actuation at low Reynolds number. AIAA Journal, 2022, 60(2): 1171–1185.
[41] Fei T., Ji L., Application of new empirical models based on mathematical statistics in the through-flow analysis. Journal of Thermal Science, 2021, 30(6): 2087–2098.
[42] Belligoli Z., Dwight R.P., Eitelberg G., Nonlinear wind-tunnel wall-interference corrections using data assimilation. AIAA Journal, 2021, 59(2): 596–606.
[43] Tyler W.D., Review of transonic wall interference corrections and considerations for development. AIAA Aviation 2019 Forum, Dallas, USA, 2019, AIAA 2019-3094.