[1]
Kielb R., Chiang H.W., Recent advancements in turbomachinery forced response analyses. 30th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, 1992. DOI: https://doi.org/10.2514/6.1992-12
[2]
Dowell E.H., ed., A modern course in aeroelasticity. Springer Dordrecht, 2004.
[3]
Stapelfeldt S., Brandstetter C., Non-synchronous vibration in axial compressors: lock-in mechanism and semi-analytical model. Journal of Sound and Vibration, 2020, 488: 115649. DOI: https://doi.org/10.1016/j.jsv.2020.115649
[4]
Day I.J., Stall, surge, and 75 years of research. Journal of Turbomachinery, 2016, 138(1): 011001. DOI: https://doi.org/10.1115/1.4031473
[5]
Ziada S., Oengören A., Vogel A., Acoustic resonance in the inlet scroll of a turbo-compressor. Journal of Fluids and Structures, 2002, 16(3): 361–373. DOI: https://doi.org/10.1006/jfls.2001.0421
[6]
Masserey P.A., McBean I., Lorini H., Analysis and improvement of vibrational behaviour on the ND37 a last stage blade. VGB PowerTech Journal, 2012, 92(8): 42–48.
[7]
Marti F., Liu F., Flutter study of NACA 64A010 airfoil using URANS and eN transition models coupled with an integral boundary layer code. AIAA Paper 2017–1648, 2017. DOI: https://doi.org/10.2514/6.2017-1648
[8]
Im H., Chen X., Zha G., Detached eddy simulation of transonic rotor stall flutter using a fully coupled fluid-structure interaction. 2011, ASME Paper No GT2011-45437. DOI: https://doi.org/10.1115/GT2011-45437
[9]
Barnes C.J., Visbal M.R., On the role of flow transition in laminar separation flutter. Journal of Fluids and Structures, 2018, 77: 213–230. DOI: https://doi.org/10.1016/j.jfluidstructs.2017.12.009
[10]
Naung S.W., Nakhchi M.E., Rahmati M., Prediction of flutter effects on transient flow structure and aeroelasticity of low-pressure turbine cascade using direct numerical simulations. Aerospace Science and Technology, 2021, 119: 107151. DOI: https://doi.org/10.1016/j.ast.2021.107151
[11]
Casoni M., Benini E., A review of computational methods and reduced order models for flutter prediction in turbomachinery. Aerospace, 2021, 8(9): 242. DOI: https://doi.org/10.3390/aerospace8090242
[12]
Michelassi V., Wissink J., Rodi W., Direct numerical simulation, large eddy simulation and unsteady Reynolds-averaged Navier-Stokes simulations of periodic unsteady flow in a low-pressure turbine cascade: A comparison. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217(4): 403–411. DOI: https://doi.org/10.1243/095765003322315469
[13]
Tucker P.G., Computation of unsteady turbomachinery flows: Part 1 - Progress and challenges, Part 2 - LES and hybrids. Progress in Aerospace Sciences, 2011, 47(7): 522–545, 546–569. DOI: https://doi.org/10.1016/j.paerosci.2011.06.004
[14]
Hodara J., Smith M.J., Hybrid Reynolds-averaged Navier-Stokes/Large-Eddy simulation closure for separated transitional flows. AIAA Journal, 2017, 55(6): 1948–1958. DOI: https://doi.org/10.2514/1.J055475
[15]
Tester B.W., Coder J.G., Combs C.S., Schmisseur J.D., Hybrid RANS/LES simulation of transitional shockwave/boundary-layer interaction. 2018 Fluid Dynamics Conference, Atlanta, Georgia, 2018, AIAA Paper 2018-3224. DOI: https://doi.org/10.2514/6.2018-3224
[16]
Langtry R.B., Menter F.R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal, 2009, 47(12): 2894–2906. DOI: https://doi.org/10.2514/1.42362
[17]
Coder J.G., Maughmer M.D., Computational fluid dynamics compatible transition modeling using an amplification factor transport equation. AIAA Journal, 2014, 52(11): 2506–2512. DOI: https://doi.org/10.2514/1.J052905
[18]
Wang X., Xiao Z., Transition-based constrained large-eddy simulation method with application to an ultrahigh-lift low-pressure turbine cascade flow. Journal of Fluid Mechanics, 2022, 941: A22. DOI: https://doi.org/10.1017/jfm.2022.286
[19]
Davidson L., Peng S.H., Hybrid LES-RANS modelling: A one-equation SGS model combined with a k-ω model for predicting recirculating flows. International Journal for Numerical Methods in Fluids, 2003, 43: 1003–1018. DOI: https://doi.org/10.1002/fld.512
[20]
Hellsten A., New two-equation turbulence model for aerodynamics applications. Helsinki University of Technology, Helsinki, Finland, 2004.
[21]
Straka, P., Příhoda, J., Application of the algebraic bypass-transition model for internal and external flows. Experimental Fluid Mechanics, 2010, Liberec, Czech Republic, 2010, 636–641.
[22]
Fürst J., Lasota M., Lepicovsky J., Musil J., Pech J., Šidlof P., Šimurda D., Effects of a single blade incidence angle offset on adjacent blades in a linear cascade. Processes, 2021, 9(11): 1974. DOI: https://doi.org/10.3390/pr9111974
[23]
Fürst J., Musil J., Šimurda D., Investigation of transonic flow through linear cascade with single blade incidence angle offset. Topical Problems of Fluid Mechanics 2022, Prague, Czech Republic, 2022, pp: 51–58. DOI: https://doi.org/10.14311/TPFM.2022.008
[24]
Lepicovsky J., Šidlof P., Šimurda D., Štěpán M., Luxa M., New test facility for forced blade flutter research. AIP Conference Proceedings, 2021, 2323: 030001. DOI: https://doi.org/10.1063/5.0041990
[25]
Kubacki S., Rokicki J., Dick E., Hybrid RANS/LES computations of plane impinging jets with DES and PANS models. International Journal of Heat and Fluid Flow, 2013, 44: 596–609. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2013.08.014
[26]
Launder B.E., On the computation of convective heat transfer in complex turbulent flows. ASME Journal of Heat Transfer, 1988, 110: 1112–1128. DOI: https://doi.org/10.1115/1.3250614
[27]
Menter F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598–1605. DOI: https://doi.org/10.2514/3.12149
[28]
Straka P., Příhoda J., Numerical simulation of compressible flow through high-loaded turbine blade cascade. Topical Problems of Fluid Mechanics, Prague, Czech Republic, 2014, pp. 131–134.
[29]
Narasimha R., The laminar-turbulent transition zone in the boundary layer. Progress in Aerospace Science, 1985, 22(1): 29–80. DOI: 10.1016/0376-0421(85)90004-1
[30]
Mayle R.E., The role of laminar-turbulent transition in gas turbine engines. Journal of Turbomachinery, 1991, 113(4): 509–537. DOI: 10.1115/1.2929110
[31]
Walker G.J., Transitional flow on axial turbomachine blading. 25th AIAA Aerospace Sciences Meeting, Reno, NV, U.S.A. 1987, 27: 595–607. DOI: https://doi.org/10.2514/6.1987-10
[32]
Langtry R.B, Menter F.R., Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes. AIAA Journal, 2009, 47(12): 2894–2906. DOI: https://doi.org/10.2514/1.42362
[33]
Luxa M., Příhoda J., Šimurda D., Straka P., Synáč J., Investigation of the compressible flow through the tip-section turbine blade cascade with supersonic inlet. Journal of Thermal Science, 2016, 25(2): 138–144. DOI: 10.1007/s11630-016-0844-0
[34] Straka P., Modelling of unsteady secondary vortices generated behind the radial gap of the axial turbine blade wheel. ECCOMAS Congress 2016, Crete, Greece, 2016. DOI: https://doi.org/10.7712/100016.2350.9777