[1] Noie S.H., Heris S.Z., Kahani M., et al., Heat transfer enhancement using Al2O3/water nanofluid in a two-phase closed thermosyphon. International Journal of Heat & Fluid Flow, 2009, 30(4): 700–705.
[2] Li Y., Chang G., Xu Y., et al., A review of MHP technology and its research status in cooling of Li-Ion power battery and PEMFC. Energy & Fuels, 2020, 34(11): 13335–13349.
[3] Yang L., Xu H., Zhang H., Numerical and experimental investigation on the performance of battery thermal management system based on micro heat pipe array. Journal of Thermal Science, 2022, 31(5): 1531–1541.
[4] Shanbedi M., Heris S.Z., Baniadam M., Investigation of heat-transfer characterization of EDA-MWCNT/DI-water nanofluid in a two-phase closed thermosyphon. Industrial & Engineering Chemistry Research, 2012, 51(3): 1423–1428.
[5] Sardarabadi H., Zeinali Heris S., Ahmadpour A., et al., Experimental investigation of a novel type of two-phase closed thermosyphon filled with functionalized carbon nanotubes/water nanofluids for electronic cooling application. Energy Conversion and Management, 2019, 188: 321–332.
[6] Mahapatra B.N., Das P.K., Sahoo S.S., Scaling analysis and experimental investigation of pulsating loop heat pipes. Applied Thermal Engineering, 2016, 108: 358– 367.
[7] He L., Gu Z., Zhang Y., et al., Review on thermal management of Lithium-ion batteries for electric vehicles: Advances, challenges, and outlook. Energy & Fuels, 2023, 35(12): 133–145.
[8] An Z., Jia L., Ding Y., et al., A review on Lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017, 26(5): 391–412.
[9] Li Y., Yang X., Tian X., et al., Capillary-driven boiling heat transfer on superwetting microgrooves. ACS Omega, 2022, 7(39): 35339–35350.
[10] Alijani H., Çetin B., Akkuş Y., et al., Effect of design and operating parameters on the thermal performance of aluminum flat grooved heat pipes. Applied Thermal Engineering, 2018, 132: 174–187.
[11] Zhang S., Chen J., Sun Y., et al., Experimental study on the thermal performance of a novel ultra-thin aluminum flat heat pipe. Renewable Energy, 2019, 135: 1133–1143.
[12] Gillot C., Avenas Y., Cezac N., et al., Silicon heat pipes used as thermal spreaders. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2003, 26(2): 332–339.
[13] Xie X., Weng Q., Luo Z., et al., Thermal performance of the flat micro-heat pipe with the wettability gradient surface by laser fabrication. International Journal of Heat and Mass Transfer, 2018, 125: 658–669.
[14] Deng D., Tang Y., Zeng J., et al., Characterization of capillary rise dynamics in parallel micro V-grooves. International Journal of Heat and Mass Transfer, 2014, 77: 311–320.
[15] Wong S., Chen C., Visualization and evaporator resistance measurement for a groove-wicked flat-plate heat pipe. International Journal of Heat and Mass Transfer, 2012, 55(9–10): 2229–2234.
[16] Liu X., Chen Y., Transient thermal performance analysis of micro heat pipes. Applied Thermal Engineering, 2013, 58(1–2): 585–593.
[17] Suman B., Hoda N., Effect of variations in thermophysical properties and design parameters on the performance of a V-shaped micro grooved heat pipe. International Journal of Heat and Mass Transfer, 2005, 48(10): 2090–2101.
[18] Wu H.Y., Cheng P., Visualization and measurements of periodic boiling in silicon microchannels. International Journal of Heat and Mass Transfer, 2003, 46(14): 2603– 2614.
[19] Jiao A.J., Ma H.B., Critser J.K., Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves. International Journal of Heat and Mass Transfer, 2007, 50(15–16): 2905–2911.
[20] Mahmood S.L., Akhanda M.A.R., Experimental investigation of micro heat pipes of different cross-sections having same hydraulic diameter. Journal of Thermal Science, 2008, 17(3): 247–252.
[21] De Vries S.F., Florea D., Homburg F.G.A., et al., Design and operation of a Tesla-type valve for pulsating heat pipes. International Journal of Heat and Mass Transfer, 2017, 105: 1–11.
[22] Nagayama G., Gyotoku S., Tsuruta T., Thermal performance of flat micro heat pipe with converging microchannels. International Journal of Heat and Mass Transfer, 2018, 122: 375–382.
[23] Shi W., Pan L., Influence of filling ratio and working fluid thermal properties on starting up and heat transferring performance of closed loop plate oscillating heat pipe with parallel channels. Journal of Thermal Science, 2017, 26(1): 73–81.
[24] Hamidnia M., Luo Y., Li Z., et al., Capillary and thermal performance enhancement of rectangular grooved micro heat pipe with micro pillars. International Journal of Heat and Mass Transfer, 2020, 153: 119581–119591.
[25] Wang G., Quan Z., Zhao Y., et al., Performance of a flat-plate micro heat pipe at different filling ratios and working fluids. Applied Thermal Engineering, 2019, 146: 459–468.
[26] Li W., Li L., Cui W., et al., Experimental investigation on the thermal performance of vapor chamber in a compound liquid cooling system. International Journal of Heat and Mass Transfer, 2021, 170: 121026–121036.
[27] Manova S., Asirvatham L.G., Nimmagadda R., et al., Feasibility of using multiport minichannel as thermosyphon for cooling of miniaturized electronic devices. Heat Transfer, 2020, 49(8): 4834–4856.
[28] Chang G., Li Y., Zhao W., et al., Performance investigation of flat-plate CLPHP with pure and binary working fluids for PEMFC cooling. International Journal of Hydrogen Energy, 2021, 46(59): 30433–30441.
[29] Zhu Y., Cui X., Han H., et al., The study on the difference of the start-up and heat-transfer performance of the pulsating heat pipe with water-acetone mixtures. International Journal of Heat and Mass Transfer, 2014, 77: 834–842.
[30] Markal B., Varol R., Experimental investigation and force analysis of flat-plate type pulsating heat pipes having ternary mixtures. International Communications in Heat and Mass Transfer, 2021, 121: 105084–105100.
[31] Yan L., Zhang P., Xu H., et al., Visualization of thermo- hydrodynamic behavior in flat-plate pulsating heat pipe with HFE-347. Journal of Thermal Science, 2021, 30: 926–938.
[32] Gou X., Li Y., Zhang Q., et al., A novel semi-visualizable experimental study of a plate gravity heat pipe at unsteady state. Energies, 2017, 10(12): 1994–2006.
[33] Yu F., Yu C., Cao J., et al., Experimental analysis of the evaporation regimes of an axially grooved heat pipe at small tilt angles. International Journal of Heat and Mass Transfer, 2018, 126: 334–341.
[34] Shi S., Cui X., Han H., et al., A study of the heat transfer performance of a pulsating heat pipe with ethanol-based mixtures. Applied Thermal Engineering, 2016, 102: 1219–1227.
[35] Manova S., Godson Asirvatham L., Raja Bose J., et al., Effect of confluence length on the heat transport capability of ultra-thin multiport mini channel thermosyphon. Applied Thermal Engineering, 2022, 201: 117763.
[36] Saygan S., Akkuş Y., Dursunkaya Z., et al., Fast and predictive heat pipe design and analysis toolbox: H-PAT. Journal of Thermal Science and Technology, 2022, 42(1): 141–156.