Using Longitudinal Fins to Improve the Melting Performance of Stearic Acid in Thermal Energy Storage Devices

  • YAN Suying ,
  • LIU Yiran ,
  • AO Ci ,
  • ZHAO Xiaoyan ,
  • ZHANG Na ,
  • ZHANG Ruiying ,
  • AHMADI Mohammad Hossein
Expand
  • 1. School of Energy and Power Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
    2. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China 
    3. University of Chinese Academy of Sciences, Beijing 100190, China
    4. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
    5. Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran

Online published: 2024-09-08

Supported by

This research was supported by the National Natural Science Foundation of China (No. 51766012), the Inner Mongolia Science and Technology Major Project (No. 2020ZD0017), the Science and Technology Research Project of Inner Mongolia Autonomous Region (No. 2021GG0252) and the Basic research business fund projects for Universities directly under the Inner Mongolia Autonomous Region (No. JY20220107).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

The heat transfer efficiency of a thermal energy storage unit (TESU) can be improved by the addition of novel longitudinal fins. A series of TESUs are analyzed using the finite volume method (FVM) to determine the effect of fin angle on the heat transfer performance. As the fin angle increases, the TES rate first increases, then decreases, reaching a maximum rate at 60°, where the melting time is less by 30.9%, 28.58%, 21.99%, 9.02%, and 18.1% than at 0°, 15°, 30°, 45°, and 80°, respectively. In addition, it is found that the melting time of the phase change material is significantly greater at the bottom of the TESU. The time percentage of this stage decreases as the fin angle increases through these percentages by 7%, 14%, 23%, 33%, and 20%, respectively. Further, the response surface methodology (RSM) is applied to optimize the longitudinal fin by minimizing the total melting time. The analysis concludes that a fin angle of 58.68° reduces the complete melting time of the stearic acid by 44% below the time at 0°. These findings fill a gap in knowledge of the effect on melting performance of the design angle of longitudinal fins and provide a reference for the design of horizontally placed longitudinal finned thermal energy storage units.

Cite this article

YAN Suying , LIU Yiran , AO Ci , ZHAO Xiaoyan , ZHANG Na , ZHANG Ruiying , AHMADI Mohammad Hossein . Using Longitudinal Fins to Improve the Melting Performance of Stearic Acid in Thermal Energy Storage Devices[J]. Journal of Thermal Science, 2024 , 33(5) : 1672 -1687 . DOI: 10.1007/s11630-024-1971-7

References

[1] Esen M., Ayhan T., Development of a model compatible with solar assisted cylindrical energy storage tank and variation of stored energy with time for different phase change materials. Energy Conversion and Management, 1996, 37: 1775–1785.
[2] Esen M., Durmuş A., Durmuş A., Geometric design of solar-aided latent heat store depending on various parameters and phase change materials. Solar Energy, 1998, 62: 19–28.
[3] Ao C., Yan S., Zhao S., Hu W., Zhao L., Wu Y., Stearic acid/expanded graphite composite phase change material with high thermal conductivity for thermal energy storage. Energy Reports, 2022, 8: 4834–4843.
[4] Jafaripour M., Sadrameli S.M., Pahlavanzadeh H., Seyed M.S.A.H., Fabrication and optimization of kaolin/stearic acid composite as a form-stable phase change material for application in the thermal energy storage systems. Journal of Energy Storage, 2021, 33: 102155. 
[5] Amadeh A., Lee Z.E., Max Z.K., Quantifying demand flexibility of building energy systems under uncertainty. Energy, 2022, 246: 123291. 
[6] Xie Y., Simbamba M.M., Cao X., Sun L., Zhou J., Yuan Y., Comparison study of a novel tank PV/T hot water system and a heat pipe PV/T system. Journal of Thermal Science, 2022, 31(6): 2009–2021.
[7] Wu Y., Li D., Yang R., Müslüm A., Liu C., Enhancing heat transfer and energy storage performance of shell-and-tube latent heat thermal energy storage unit with unequal-length fins. Journal of Thermal Science, 2022, 32(6): 2018–2031.
[8] Huang Y., Song L., Wu S., Liu X., Investigation on the thermal performance of a multi-tube finned latent heat thermal storage pool. Applied Thermal Engineering, 2022, 200: 117658. 
[9] Abdulateef A.M., Jaszczur M., Hassan Q., et al., Enhancing the melting of phase change material using a fins-nanoparticle combination in a triplex tube heat exchanger. Journal of Energy Storage, 2021, 35: 102227.
[10] Altohamy A.A., Rabbo M.F. A., Sakr R.Y., Attia A.A.A., Effect of water based Al2O3 nanoparticle PCM on cool storage performance. Applied Thermal Engineering, 2015, 84: 331–338.
[11] Peng H., Yan W., Wang Y., Feng S., Discharging process and thermal evaluation in the thermal energy storage system with fractal tree-like fins. International Journal of Heat and Mass Transfer, 2022, 183: 122073.
[12] Hasnain F., Irfan M., Muhammad M.K., Lehar A.K., Hassan F.A., Melting performance enhancement of a phase change material using branched fins and nanoparticles for energy storage applications. Journal of Energy Storage, 2021, 38: 102513. 
[13] Sciacovelli A., Gagliardi F., Verda V., Maximization of performance of a PCM latent heat storage system with innovative fins. Applied Energy, 2015, 137: 707–715.
[14] Ye W.B., Enhanced latent heat thermal energy storage in the double tubes using fins. Journal of Thermal Analysis and Calorimetry, 2017, 128: 533–540.
[15] Ye W.B., Guo H.J., Huang S.M., Hong Y.X., Research on melting and solidification processes for enhanced double tubes with constant wall temperature/wall heat flux. Heat Transfer—Asian Research, 2018, 47: 583–599. 
[16] Ye W.B., Melting process in a rectangular thermal storage cavity heated from vertical walls. Journal of Thermal Analysis and Calorimetry, 2016, 123: 873–880.
[17] Ye W.B., Thermal and hydraulic performance of natural convection in a rectangular storage cavity. Applied Thermal Engineering, 2016, 93: 1114–1123. 
[18] Yao S., Huang X., Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system. Energy, 2021, 227: 120527.
[19] Rostami A.K., Alizadeh M., Fazlollahtabar A., Ganji D.D., Performance enhancement of a maple leaf-shaped latent heat energy storage unit by adding nanoparticles and leaf vein fins. Journal of Energy Storage, 2021, 43: 103159.
[20] Zhang S., Pu L., Xu L., Liu R., Li Y., Melting performance analysis of phase change materials in different finned thermal energy storage. Applied Thermal Engineering, 2020, 176: 115425.
[21] Liu J., Hu P., Liu Z., Nie C., Enhancement effect of T-shaped fins on phase change material melting in a horizontal shell-and-tube storage unit. International Journal of Heat and Mass Transfer, 2023, 208: 124044. 
[22] Jain A., Abbas Muhammad M., Torabi M., Steady state thermal analysis of a porous fin with radially outwards fluid flow. International Journal of Heat and Mass Transfer, 2023, 209: 124109. 
[23] Chen C., Diao Y., Zhao Y., et al., Thermal performance of cold thermal energy storage system with fin and fin-foam structures. Applied Thermal Engineering, 2023, 228: 120459. 
[24] Hyun K.S., Seong H.P., Sudhanshu P., Yeong H.M., Effects of fin positioning on the thermal performance of a phase change material-filled heat sink with horizontal fins. Journal of Energy Storage, 2023, 68: 107756. 
[25] Huang B., Yang S., Li X., Wang J., Peter D.L., Strengthening of melting-solidification process in latent heat storage through sine wave shaped fins. Journal of Energy Storage, 2023, 66: 107494.
[26] Nishant M., Wang X., Negnevitsky M., Cao F., Melting characteristics of a longitudinally finned-tube horizontal latent heat thermal energy storage system. Solar Energy, 2021, 230: 333–344. 
[27] Soltani H., Soltani M., Karimi H., Nathwani J., Heat transfer enhancement in latent heat thermal energy storage unit using a combination of fins and rotational mechanisms. International Journal of Heat and Mass Transfer, 2021, 179: 121667.
[28] Masoumi H., Haghighi khoshkhoo R., Mirfendereski S.M., Experimental and numerical investigation of melting/solidification of nano-enhanced phase change materials in shell & tube thermal energy storage systems. Journal of Energy Storage, 2022, 47: 103561.
[29] Li H., Hu C., He Y., Tang D., Wang K., Influence of fin parameters on the melting behavior in a horizontal shell-and-tube latent heat storage unit with longitudinal fins. Journal of Energy Storage, 2021, 34: 102230.
[30] Sheikholeslami M., Jafaryar M., Shafee A., Li Z., Simulation of nanoparticles application for expediting melting of PCM inside a finned enclosure. Physical-Statistical Mechanics and Its Applications, 2019, 523: 544–556.
[31] Shen Z.G., Chen S., Chen B., Heat transfer performance of a finned shell-and-tube latent heat thermal energy storage unit in the presence of thermal radiation. Journal of Energy Storage, 2022, 45: 103724.
[32] Sharma A., Parth P., Shobhana S., Bobin M., Hardik B.K., Numerical study of ice freezing process on fin aided thermal energy storage system. International Communications in Heat and Mass Transfer, 2022, 130: 105792.
[33] Pahamli Y., Hosseini M.J., Saedi Ardahaie S., Ranjbar A.A., Improvement of a phase change heat storage system by Blossom-Shaped Fins: Energy analysis. Renewable Energy, 2022, 182: 192–215.
[34] Chen K., Mohammed H.I., Mahdi J.M., Rahbari A., Cairns A., Talebizadehsardari P., Effects of non-uniform fin arrangement and size on the thermal response of a vertical latent heat triple-tube heat exchanger. Journal of Energy Storage, 2022, 45: 103723.
[35] Yang X., Wang X., Liu Z., Luo X., Yan J., Effect of fin number on the melting phase change in a horizontal finned shell-and-tube thermal energy storage unit. Solar Energy Materials and Solar Cells, 2022, 236: 111527.
[36] Yang X., Guo J., Yang B., Cheng H., Wei P., He Y.L., Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit. Applied Energy, 2020, 279: 115772.
[37] Nie C., Deng S., Liu J., Li Y., Numerical investigation on latent heat storage enhancement using a gradient-concentration nanoparticles phase change material. Applied Thermal Engineering, 2021, 197: 117360.
[38] Abdulateef A. M., Jaszczur M., Hassan Q., Anish R, Niyas H., Sopian K., Abdulateef J., Enhancing the melting of phase change material using a fins–nanoparticle combination in a triplex tube heat exchanger. Journal of Energy Storage, 2021, 35: 102227.
[39] Pu L., Zhang S., Xu L., Li Y., Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit. Applied Thermal Engineering, 2020, 166: 114753.
[40] Mahdi J.M., Lohrasbi S., Ganji D.D., Nsofor E.C., Accelerated melting of PCM in energy storage systems via novel configuration of fins in the triplex-tube heat exchanger. International Journal of Heat and Mass Transfer, 2018, 124: 663–676.
[41] Gurpreet S.S., Kumar V., Muthukumar P., Design assessment of a horizontal shell and tube latent heat storage system: Alternative to fin designs. Journal of Energy Storage, 2021, 44: 103282.
[42] Al-Abidi A.A., Mat S., Sopian K., Sulaiman M.Y., Mohammad A.T., Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Applied Thermal Engineering, 2013, 53: 147–156.
[43] Tiwari V., Rai Aakash C., Srinivasan P., Parametric analysis and optimization of a latent heat thermal energy storage system for concentrated solar power plants under realistic operating conditions. Renewable Energy, 2021, 174: 305–319.
Outlines

/