Others

Spectral Selectivity of CdTe Cells with Substrate Configuration for Photovoltaic/Thermal Applications

  • CHEN Ken ,
  • HU Kongfu ,
  • ZHAO Bin ,
  • CHEN Tao ,
  • HAO Yong ,
  • PEI Gang
Expand
  • 1. Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230027, China
    2. Key Laboratory of Solar Thermal Conversion of Anhui Province, Hefei 230027, China
    3. Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China 
    4. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
    5. University of Chinese Academy of Sciences, Beijing 100049, China

Online published: 2024-07-15

Supported by

This work was supported by the National Natural Science Foundation of China (NSFC 52130601 and 52106276) and the Fundamental Research Funds for the Central Universities (WK5290000003). This work was partially conducted at the University of Science and Technology of China Center for Micro and Nanoscale Research and Fabrication. We appreciate the support of the Research Center for Multi-energy complementation and conversion.

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

Existing photovoltaic cells with high infrared emissivity generate huge radiative heat loss in photovoltaic/thermal applications and degrade the photothermal performance. The purpose of this work is to evaluate the full spectral absorptivity of CdTe cells to find a spectrally selective photovoltaic cell for photovoltaic/thermal applications. To this end, the solar absorptivity and mid-infrared thermal emissivity of CdTe cells were tested by ellipsometry, UV-Vis-NIR spectrophotometer, and Fourier transform infrared spectrometer. The experimental results show that the AM 1.5 solar spectrum weighted absorptivity of the substrate configuration CdTe cell reaches 0.91, and the mid-infrared emissivity is only 0.29, while the superstrate configuration cell emissivity is as high as 0.9. Further research shows that substrate configuration with a transparent conductive layer on top can be flexibly grown on metal foils and has spectral selectivity with high solar absorptivity and low mid-infrared emissivity should be considered in the future for photovoltaic/thermal applications.

Cite this article

CHEN Ken , HU Kongfu , ZHAO Bin , CHEN Tao , HAO Yong , PEI Gang . Spectral Selectivity of CdTe Cells with Substrate Configuration for Photovoltaic/Thermal Applications[J]. Journal of Thermal Science, 2024 , 33(4) : 1542 -1553 . DOI: 10.1007/s11630-024-1979-z

References

[1] Huang G., Wang K., Markides C.N., Efficiency limits of concentrating spectral-splitting hybrid photovoltaic-thermal (PV-T) solar collectors and systems. Light: Science & Applications, 2021, 10(1): 28.
[2] Michael J.J., S I., Goic R., Flat plate solar photovoltaic-thermal (PV/T) systems: A reference guide. Renewable and Sustainable Energy Reviews, 2015, (51): 62–88.
[3] Das D., Kalita P., Roy O., Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development. Renewable and Sustainable Energy Reviews, 2018, (84): 111–130.
[4] Garcia Noxpanco M., Wilkins J., Riffat S., A review of the recent development of Photovoltaic/Thermal (PV/T) systems and their applications. Future Cities and Environment, 2020, 6(1): 9.
[5] Bigorajski J., Chwieduk D., Analysis of a micro photovoltaic/thermal – PV/T system operation in moderate climate. Renewable Energy, 2019, 137: 127–136.
[6] Diwania S., Agrawal S., Siddiqui A.S., Singh S., Photovoltaic-thermal (PV/T) technology: a comprehensive review on applications and its advancement. International Journal of Energy and Environmental Engineering, 2019, 11(1): 33–54.
[7] Al-Waeli A.H., Kazem H.A., Chaichan M.T., Sopian K., Photovoltaic/thermal (PV/T) systems: principles, design, and applications. Place Springer Nature, 2019.
[8] Dupré O., Vaillon R., Green M.A., Temperature coefficients of photovoltaic devices. Place Springer, 2017, pp. 29–74.
[9] Mellor A., Alonso Alvarez D., Guarracino I., Ramos A., Riverola Lacasta A., Ferre Llin L., Murrell A.J., Paul D.J., Chemisana D., Markides C.N., Ekins-Daukes N.J., Roadmap for the next-generation of hybrid photovoltaic-thermal solar energy collectors. Solar Energy, 2018, 174: 386–398.
[10] Lämmle M., Kroyer T., Fortuin S., Wiese M., Hermann M., Development and modelling of highly-efficient PVT collectors with low-emissivity coatings. Solar Energy, 2016, 130: 161–173.
[11] Riverola A., Mellor A., Alvarez D.A., Llin L.F., Guarracino I., Markides C.N., Paul D., Chemisana D., Ekins-Daukes N., Experimental and theoretical study of the infrared emissivity of crystalline silicon solar cells. 2017 IEEE 44th Photovoltaic Specialist Conference (PVSC), 2017, pp.1339–1341. 
[12] Alonso-Álvarez D., Ferre Llin L., Mellor A., Paul D.J., Ekins-Daukes N.J., ITO and AZO films for low emissivity coatings in hybrid photovoltaic-thermal applications. Solar Energy, 2017, 155: 82–92.
[13] Alonso-Álvarez D., Augusto A., Pearce P., Llin L.F., Mellor A., Bowden S., Paul D.J., Ekins-Daukes N., Thermal emissivity of silicon heterojunction solar cells. Solar Energy Materials and Solar Cells, 2019, 201: 110051.
[14] Virtuani A., Pavanello D., Friesen G., Overview of temperature coefficients of different thin film photovoltaic technologies. 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, 2010, 3: 83.
[15] Rejón V., Mis-Fernández R., Hernández-Rodríguez E., Riech I., Peña J.L., The CdS/CdTe solar cells with reactively sputtered a-MoOx/Mo back contact. IEEE 42nd Photovoltaic Specialist Conference (PVSC), 2015, pp. 1–3. 
[16] Wu X., High-efficiency polycrystalline CdTe thin-film solar cells. Solar Energy, 2004, 77(6): 803–814.
[17] Gupta A., Compaan A.D., All-sputtered 14% CdS∕CdTe thin-film solar cell with ZnO: Al transparent conducting oxide. Applied Physics Letters, 2004, 85(4): 684–686.
[18] Singh V.P., McClure J.C., Lush G., Wang W., Wang X., Thompson G., Clark E., Thin film CdTe-CdS heterojunction solar cells on lightweight metal substrates. Solar Energy Materials and Solar Cells, 1999, 59: 145–161.
[19] Gretener C., Perrenoud J., Kranz L., Kneer L., Schmitt R., Buecheler S., Tiwari A.N., CdTe/CdS thin film solar cells grown in substrate configuration. Progress in Photovoltaics: Research and Applications, 2013, 21(8): 1580–1586.
[20] Ehrmann N., Reineke-Koch R.J.T.S.F., Selectively coated high efficiency glazing for solar-thermal flat-plate collectors. Thin Solid Films, 2012, 520(12): 4214–4218.
[21] Compaan A.D., Gupta A., Lee S., Wang S., Drayton J., High efficiency, magnetron sputtered CdS/CdTe solar cells. Solar Energy, 2004, 77(6): 815–822.
[22] Compaan A.D., Gupta A., Lee S., Wang S., Drayton J.J.S.E., High efficiency, magnetron sputtered CdS/CdTe solar cells. Solar Energy, 2004, 77(6): 815–822.
[23] Gretener C., Perrenoud J., Kranz L., Baechler C., Yoon S., Romanyuk Y.E., Buecheler S., Tiwari A.N., Development of MoOx thin films as back contact buffer for CdTe solar cells in substrate configuration. Thin Solid Films, 2013, 535: 193–197.
[24] Tfcalc. Version 3.5, software spectra, Portland, 2019. 
[25] Querry M.R., Optical constants of minerals and other materials from the millimeter to the ultraviolet. Chemical Research, Development & Engineering Center, US Army Armament Munitions Chemical Command, 1998. 
[26] Cao F., McEnaney K., Chen G., Ren Z., A review of cermet-based spectrally selective solar absorbers. Energy & Environmental Science, 2014, 7(5): 1615–1627. 
[27] Li Y., Xiong C., Huang H., Peng X., Mei D., Li M., Liu G., Wu M., Zhao T., Huang B.J.A.M., 2D Ti3C2Tx MXenes: Visible black but infrared white materials.  Advanced Materials, 2021, 33(41): 2103054.
[28] Moriaki Wakaki., Takehisa Shibuya., Keiei Kudo., Optical materials and applications. CRC press, Florida, 2017. 
[29] Lin Q., Armin A., Nagiri R.C.R., Burn P.L., Meredith P., Electro-optics of perovskite solar cells. Nature Photonics, 2014, 9(2): 106–112.
[30] Hakeem A.A., Ali H., Abd El-Raheem M., Hasaneen M.J.O., Study the effect of type of substrates on the microstructure and optical properties of CdTe thin films. Optik, 2021, 225: 165390.
[31] Cetinkaya C., Cokduygulular E., Kinaci B., Guzelcimen F., Ozen Y., Sonmez N.A., Ozcelik S., Highly improved light harvesting and photovoltaic performance in CdTe solar cell with functional designed 1D-photonic crystal via light management engineering. Scientific Reports, 2022, 12(1): 11245.
[32] Romeo A., Artegiani E., Menossi D.J.S.E., Low substrate temperature CdTe solar cells: A review. Solar Energy, 2018, 175: 9–15.
[33] Kocer H., Butun S., Li Z., Aydin K.J.S.r., Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities. Scientific Reports, 2015, 5(1): 1–6.
[34] Kranz L., Gretener C., Perrenoud J., Schmitt R., Pianezzi F., La Mattina F., Blosch P., Cheah E., Chirila A., Fella C.M., Hagendorfer H., Jager T., Nishiwaki S., Uhl A.R., Buecheler S., Tiwari A.N., Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil. Nature Communications, 2013, 4(1): 2306.
[35] McGott D.L., Kempe M.D., Glynn S., Bosco N., Barnes T.M., Haegel N.M., Wolden C.A., Reese M.O., Thermomechanical lift-off and recontacting of CdTe solar cells. ACS Applied Materials & Interfaces, 2018, 10(51): 44854–44861.
Outlines

/