[1]
Splitter D., Reitz R.D., Hanson R., High efficiency, low emissions RCCI combustion by use of a fuel additive. SAE International Journal of Fuels and Lubricants, 2010, 3(2): 742–756.
[2]
Musculus M.P.B., Miles P.C., Pickett L.M., Conceptual models for partially premixed low-temperature diesel combustion. Progress in Energy and Combustion Science, 2013, 39(2): 246–283.
[3]
Ansari A., Jayachandran J., Egolfopoulos F.N., Parameters influencing the burning rate of laminar flames propagating into a reacting mixture. Proceedings of the Combustion Institute, 2019, 37(2): 1513–1520.
[4]
Pan J., Wei H., Shu G., Chen Z., Zhao P., The role of low temperature chemistry in combustion mode development under elevated pressures. Combustion and Flame, 2016, 174: 179–193.
[5]
Ju Y., Reuter C.B., Yehia O.R., Farouk T.I., Won S.H., Dynamics of cool flames. Progress in Energy and Combustion Science, 2019, 75: 100787.
[6]
Gong X., Ren Z., Flame speed scaling in autoignition-assisted freely propagating n-heptane/air flames. Proceedings of the Combustion Institute, 2021, 38(2): 2153–2161.
[7]
Rakopoulos C.D., Giakoumis E.G., Second-law analyses applied to internal combustion engines operation. Progress in Energy and Combustion Science, 2006, 32(1): 2–47.
[8]
Feng H., Zhang C., Wang M., Liu D., Yang X., Lee C-F., Availability analysis of n-heptane/iso-octane blends during low-temperature engine combustion using a single-zone combustion model. Energy Conversion and Management, 2014, 84: 613–622.
[9]
Khoobbakht G., Akram A., Karimi M., Najafi G., Exergy and energy analysis of combustion of blended levels of biodiesel, ethanol and diesel fuel in a di diesel engine. Applied Thermal Engineering, 2016, 99: 720–729.
[10]
Rakopoulos C.D., Michos C.N., Giakoumis E.G., Availability analysis of a syngas fueled spark ignition engine using a multi-zone combustion model. Energy, 2008, 33(9): 1378–1398.
[11]
Razmara M., Bidarvatan M., Shahbakhti M., Robinett R.D., Optimal exergy-based control of internal combustion engines. Applied Energy, 2016, 183: 1389–1403.
[12]
Som S.K., Datta A., Thermodynamic irreversibilities and exergy balance in combustion processes. Progress in Energy and Combustion Science, 2008, 34(3): 351–376.
[13]
Dunbar W.R., Lior N., Sources of combustion irreversibility. Combustion Science and Technology, 1994, 103(1–6): 41–61.
[14]
Tsatsaronis G., Morosuk T., Koch D., Sorgenfrei M., Understanding the thermodynamic inefficiencies in combustion processes. Energy, 2013, 62: 3–11.
[15]
Kiani Deh Kiani M., Rostami S., Eslami M., Yusaf T., Sendilvelan S., The effect of inlet temperature and spark timing on thermo-mechanical, chemical and the total exergy of an SI engine using bioethanol-gasoline blends. Energy Conversion and Management, 2018, 165: 344–353.
[16]
Li Y., Jia M., Kokjohn S.L., Chang Y., Reitz R.D., Comprehensive analysis of exergy destruction sources in different engine combustion regimes. Energy, 2018, 149: 697–708.
[17]
Li Y., Jia M., Chang Y., Kokjohn S.L., Reitz R.D., Thermodynamic energy and exergy analysis of three different engine combustion regimes. Applied Energy, 2016, 180: 849–858.
[18]
Zhang J., Han D., Huang Z., Second-law thermodynamic analysis for premixed hydrogen flames with diluents of argon/nitrogen/carbon dioxide. International Journal of Hydrogen Energy, 2019, 44(10): 5020–5029.
[19]
Acampora L., Marra F.S., Second law thermodynamic analysis of syngas premixed flames. International Journal of Hydrogen Energy, 2020, 45(21): 12185–12202.
[20]
Chen S., Analysis of entropy generation in counter-flow premixed hydrogen-air combustion. International Journal of Hydrogen Energy, 2010, 35(3): 1401–1411.
[21]
Liu Y., Zhang J., Ju D., Huang Z, Han D., Analysis of exergy losses in laminar premixed flames of methane/hydrogen blends. International Journal of Hydrogen Energy, 2019, 44(43): 24043–24053.
[22]
Jejurkar S.Y., Mishra D.P., Effects of wall thermal conductivity on entropy generation and exergy losses in a H
2-air premixed flame microcombustor. International Journal of Hydrogen Energy, 2011, 36(24): 15851–15859.
[23]
Jiang D., Yang W., Teng J., Entropy generation analysis of fuel lean premixed CO/H
2/air flames. International Journal of Hydrogen Energy, 2015, 40(15): 5210–5220.
[24]
Datta A., Entropy generation in a confined laminar diffusion flame. Combustion Science and Technology, 2000, 159(1): 39–56.
[25]
Safari M., Sheikhi M.R.H., Large eddy simulation-based analysis of entropy generation in a turbulent non-premixed flame. Energy, 2014, 78: 451–457.
[26]
Emadi A., Emami M.D., Analysis of entropy generation in a hydrogen-enriched turbulent non-premixed flame. International Journal of Hydrogen Energy, 2013, 38(14): 5961–5973.
[27]
Nishida K., Takagi T., Kinoshita S., Analysis of entropy generation and exergy loss during combustion. Proceedings of the Combustion Institute, 2002, 29(1): 869–874.
[28]
Liu D., Wang H., Zhang Y., Liu H., Zheng Z., Yao M., On the entropy generation and exergy loss of laminar premixed flame under engine-relevant conditions. Fuel, 2021, 283: 119245.
[29]
Goodwin D.G., Moffat H.K., Speth R.L., Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. URL http://www.cantera.org, 2018.
[30]
Reuter C.B., Zhang R., Yehia O.R., Rezgui Y., Ju Y., Counterflow flame experiments and chemical kinetic modeling of dimethyl ether/methane mixtures. Combustion and Flame, 2018, 196: 1–10.
[31]
Sankaran R., Propagation velocity of a deflagration front in a preheated autoigniting mixture. 9th US National Combustion Meeting, Cincinnati, Ohio, US, 2015, Paper 114LF-0349.
[32]
Krisman A., Hawkes E.R., Chen J.H., The structure and propagation of laminar flames under autoignitive conditions. Combustion and Flame, 2018, 188: 399–411.
[33]
Demirel Y., Nonequilibrium thermodynamics: transport and rate processes in physical, chemical and biological systems, second ed., Elsevier, Amsterdam, 2007.
[34]
De Groot S.R., Mazur P., Non-equilibrium thermodynamics, Dover, New York, 1984, pp. 235–246.
[35]
Kee R.J., Coltrin M.E., Glarborg P., Chemically reacting flow: theory and practice. John Wiley & Sons, New Jersey, 2003.
[36]
Bejan A., Entropy generation through heat and fluid flow. Wiley, New York, 1982.
[37]
Chavannavar P.S., Caton J.A., Destruction of availability (exergy) due to combustion processes: A parametric study. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2006, 220(7): 655–668.
[38]
Kameyama H., Yoshida K., Yamauchi S., Fueki K., Evaluation of reference exergies for the elements. Applied Energy, 1982, 11(1): 69–83.
[39]
Arpaci V.S., Selamet A., Entropy production in flames. Combustion and Flame, 1988, 73(3): 251–259.
[40]
Ando H., Universal rule of hydrocarbon oxidation. SAE International, 2009. DOI: 10.4271/2009-01-0948
[41]
Kuwahara K., Ando H., Role of heat accumulation by reaction loop initiated by H
2O
2 decomposition for thermal ignition. 2007, SAE Technical Paper 2007-01-0908. DOI: 10.4271/2007-01-0908
[42]
Wang Y., Wei L., Yao M., A theoretical investigation of the effects of the low-temperature reforming products on the combustion of n-heptane in an HCCI engine and a constant volume vessel. Applied Energy, 2016, 181: 132–139.
[43]
Chakravarthy V.K., Daw C.S., Pihl J.A., Conklin J.C., Study of the theoretical potential of thermochemical exhaust heat recuperation for internal combustion engines. Energy & Fuels, 2010, 24(3): 1529–1537.
[44]
Jin H., Hong H., Wang B., Han W., Lin R., A new principle of synthetic cascade utilization of chemical energy and physical energy. Science in China Series E: Technological Sciences, 2005, 48(2): 163–179.
[45]
Ishida M., Kawamura K., Energy and exergy analysis of a chemical process system with distributed parameters based on the enthalpy-direction factor diagram. Industrial & Engineering Chemistry Process Design and Development, 1982, 21(4): 690–695.
[46]
Tartakovsky L., Sheintuch M., Fuel reforming in internal combustion engines. Progress in Energy and Combustion Science, 2018, 67: 88–114.