[1] Farrell J.T., Johnston R.J., Androulakis I.P., Molecular structure effects on laminar burning velocities at elevated temperature and pressure. SAE Technical Paper, United States, 2004, 01: 2936.
DOI: https://doi.org/10.4271/2004-01-2936.
[2] Ji C., Sarathy S.M., Veloo P.S., et al., Effects of fuel branching on the propagation of octane isomers flames. Combustion and Flame, 2012, 159(4): 1426–1436.
[3] Kumar K., Sung C.-J., Laminar flame speeds and extinction limits of preheated n-decane/O2/N2 and n-dodecane/O2/N2 mixtures. Combustion and Flame, 2007, 151(1–2): 209–224.
[4] Moghaddas A., Eisazadeh-Far K., Metghalchi H., Laminar burning speed measurement of premixed n-decane/air mixtures using spherically expanding flames at high temperatures and pressures. Combustion and Flame, 2012, 159(4): 1437–1443.
[5] Comandini A., Dubois T., Chaumeix N., Laminar flame speeds of n-decane, n-butylbenzene, and n-propylcyclohexane mixtures. Proceedings of the Combustion Institute, 2015, 35(1): 671–678.
[6] Alekseev V.A., Soloviova-Sokolova J.V., Matveev S.S., et al., Laminar burning velocities of n -decane and binary kerosene surrogate mixture. Fuel, 2017, 187: 429–434.
[7] Davis S.G., Law C.K., Determination of and fuel structure effects on laminar flame speeds of C1 to C8 hydrocarbons. Combustion Science and Technology, 1998, 140(1–6): 427–449.
[8] Ji C., Dames E., Wang Y.L., et al., Propagation and extinction of premixed C5–C12 n-alkane flames. Combustion and Flame, 2010, 157(2): 277–287.
[9] Kelley A.P., Smallbone A.J., Zhu D.L., et al., Laminar flame speeds of C5 to C8 n-alkanes at elevated pressures: Experimental determination, fuel similarity, and stretch sensitivity. Proceedings of the Combustion Institute, 2011, 33(1): 963–970.
[10] Burcat A., Olchanski E., Sokolinski C., Kinetics of hexane combustion in a shock tube. Israel Journal of Chemistry, 1996, 36(3): 313–320.
[11] Gauthier B.M., Davidson D.F., Hanson R.K., Shock tube determination of ignition delay times in full-blend and surrogate fuel mixtures. Combustion and Flame, 2004, 139(4): 300–311.
[12] Olchanski E., Burcat A., Decane oxidation in a shock tube. International Journal of Chemical Kinetics, 2006, 38(12): 703–713.
[13] Zhukov V.P., Sechenov V.A., Starikovskii A.Y., Autoignition of n-decane at high pressure. Combustion and Flame, 2008, 153(1–2): 130–136.
[14] Shen H.-P.S., Steinberg J., Vanderover J., et al., A shock tube study of the ignition of n-heptane, n-decane, n-dodecane, and n-tetradecane at elevated pressures. Energy & Fuels, 2009, 23(5): 2482–1489.
[15] Gribi B., Lin Y., Hui X., et al., Effects of hydrogen peroxide addition on combustion characteristics of n -decane/air mixtures. Fuel, 2018, 223: 324–333.
[16] Davidson D.F., Ranganath S.C., Lam K.Y., et al., Ignition delay time measurements of normal alkanes and simple oxygenates. Journal of Propulsion and Power, 2010, 26(2): 280–287.
[17] Haylett D.R., Davidson D.F., Hanson R.K., Ignition delay times of low-vapor-pressure fuels measured using an aerosol shock tube. Combustion and Flame, 2012, 159(2): 552–561.
[18] Griffiths J.F., Halford-Maw P.A., Rose D.J., Fundamental features of hydrocarbon autoignition in a rapid compression machine. Combustion and Flame, 1993, 95(3): 291–306.
[19] Zeppieri S.P., Klotz S.D., Dryer F.L., Modeling concepts for larger carbon number alkanes: A partially reduced skeletal mechanism for n-decane oxidation and pyrolysis. Proceedings of the Combustion Institute, 2000, 28(2): 1587–1595.
[20] Jahangirian S., Dooley S., Haas F.M., et al., A detailed experimental and kinetic modeling study of n-decane oxidation at elevated pressures. Combustion and Flame, 2012, 159(1): 30–43.
[21] Chang Y., Jia M., Liu Y., et al., Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology. Combustion and Flame, 2013, 160(8): 1315–1332.
[22] Sarathy S.M., Westbrook C.K., Mehl M., et al., Comprehensive chemical kinetic modeling of the oxidation of 2-methylalkanes from C7 to C20. Combustion and Flame, 2011, 158(12): 2338–2357.
[23] Curran H.J., Gaffuri P., Pitz W.J., et al., A comprehensive modeling study of iso-octane oxidation. Combustion and Flame, 2002, 129(3): 253–280.
[24] Westbrook C.K., Pitz W.J., Herbinet O., et al., A comprehensive detailed chemical kinetic reaction mechanism for combustion of n-alkane hydrocarbons from n-octane to n-hexadecane. Combustion and Flame, 2009, 156(1): 181–199.
[25] Jahangirian S., Dooley S., Haas F.M., et al., A detailed experimental and kinetic modeling study of n-decane oxidation at elevated pressures. Combustion & Flame, 2012, 159(1): 30–43.
[26] Dagaut P., Bakali A.E., Ristori A., The combustion of kerosene: Experimental results and kinetic modelling using 1- to 3-component surrogate model fuels. Fuel, 2006, 85(7–8): 944–956.
[27] Bechtold J.K., Matalon M., Hydrodynamic and diffusion effects on the stability of spherically expanding flame. Combustion and Flame, 1987, 67: 77–90.
[28] Michelson D.M., Sivashinsky G.I., Nonlinear analysis of hydrodynamic instability in laminar flames—II. Numerical experiments. Acta Astronautica, 1977, 4(11): 1207–1221.
[29] Sivashinsky G.I., Diffusional-thermal theory of cellular flames. Combustion Science and Technology, 1977, 15(3–4): 137–45.
[30] Sivashinsky G.I., Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations. Acta Astronautica, 1977, 4(11): 1177–1206.
[31] Sivashinsky G.I., Instabilities, pattern formation, and turbulence in flames. Annual Review of Fluid Mechanics, 1983, 15(1): 179–199.
[32] Bradley D., Sheppard C.G.W., Woolley R., et al., The development and structure of flame instabilities and cellularity at low Markstein numbers in explosions. Combustion and Flame, 2000, 122: 195–209.
[33] Matalon M., Matkowsky B.J., Flames as gasdynamic discontinuities. Journal of Fluid Mechanics, 1982, 124: 239–259.
[34] Addabbo R., Bechtold J.K., Matalon M., Wrinkling of spherically expanding flames. Proceedings of the Combustion Institute, 2002, 29(2): 1527–1535.
[35] Beeckmann J., Hesse R., Kruse S., et al., Propagation speed and stability of spherically expanding hydrogen/air flames: Experimental study and asymptotics. Proceedings of the Combustion Institute, 2017, 36(1): 1531–1538.
[36] Jomaas G., Law C.K., Bechtold J.K., On transition to cellularity in expanding spherical flames. Journal of Fluid Mechanics, 2007, 583: 1–26.
[37] Law C.K., Jomaas G., Bechtold J.K., Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: theory and experiment. Proceedings of the Combustion Institute, 2005, 30(1): 159–167.
[38] Bradley D., Instabilities and flame speeds in large-scale premixed gaseous explosions. Philosophical Transactions of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1999, 357(1764): 3567.
[39] Matalon M., Cui C., Bechtold J.K., Hydrodynamic theory of premixed flames: effects of stoichiometry, variable transport coefficients and arbitrary reaction orders. Journal of Fluid Mechanics, 2003, 487: 179–210.
[40] Li Q., Hu E., Zhang X., et al., Laminar flame speeds and flame instabilities of pentanol isomer-air mixtures at elevated temperatures and pressures. Energy & Fuels, 2013, 27(2): 1141–1150.
[41] Zhang X., Tang C., Yu H., et al., Flame-Front instabilities of outwardly expanding isooctane/n-butanol blend-air flames at elevated pressures. Energy & Fuels, 2014, 28(3): 2258–2266.
[42] Jomaas G., Law C.K., An experimental study on the self-acceleration of cellular spherical flames. 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2008. DOI: https://doi.org/10.2514/6.2008-1414.
[43] Hu E., Huang Z., He J., et al., Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames. International Journal of Hydrogen Energy, 2009, 34(11): 4876–4888.
[44] Chen Z., On the extraction of laminar flame speed and Markstein length from outwardly propagating spherical flames. Combustion and Flame, 2011, 158(2): 291–300.
[45] Moffat R.J., Describing the uncertainties in experimental results. Experimental Thermal & Fluid Science, 1988, 1(1): 3–17.
[46] Egolfopoulos F.N., Law C.K., Chain mechanisms in the overall reaction orders in laminar flame propagation. Combustion and Flame, 1990, 80(1): 7–16.
[47] Lu X., Hu E., Xu Z., et al., Non-monotonic behavior of flame instability of 1,3-butadiene/O2/He mixture up to 1.5 MPa. Fuel, 2019, 255: 115749.
[48] Zhao H., Wang J., Bian Z., et al., Onset of cellular instability and self-acceleration propagation of syngas spherically expanding flames at elevated pressures. International Journal of Hydrogen Energy, 2019, 44(51): 27995–28006.
[49] Gostintsev Y.A., Istratov A.G., Shulenin Y.V., Self-similar propagation of a free turbulent flame in mixed gas mixtures. Combustion, Explosion and Shock Waves, 1988, 24(5): 563–569.
[50] Filyand L., Sivashinsky G.I., Frankel M.L., On self-acceleration of outward propagating wrinkled flames. Physica D: Nonlinear Phenomena, 1994, 72(1): 110–118.
[51] Liberman M.A., Ivanov M.F., Peil O.E., et al., Self-acceleration and fractal structure of outward freely propagating flames. Physics of Fluids, 2004, 16(7): 2476–2482.
[52] Aldredge R.C., Zuo B., Flame acceleration associated with the Darrieus-Landau instability. Combustion and Flame, 2001, 127(3): 2091–2101.
[53] Bychkov V.V., Liberman M.A., Stability and the fractal structure of a spherical flame in a self-similar regime. Physical Review Letters, 1996, 76(15): 2814–2817.
[54] Blinnikov S.I., Sasorov P.V., Landau-Darrieus instability and the fractal dimension of flame fronts. Physical Review E, Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1996, 53(5): 4827– 4841.
[55] Wu F., Jomaas G., Law C.K., An experimental investigation on self-acceleration of cellular spherical flames. Proceedings of the Combustion Institute, 2013, 34(1): 937–945.
[56] Yang S., Saha A., Wu F., et al., Morphology and self-acceleration of expanding laminar flames with flame-front cellular instabilities. Combustion and Flame, 2016, 171: 112–118.