A New Excess Free Energy Mixing Rule for Representing Vapor-Liquid Equilibria of Mixed Refrigerants

  • YE Gongran ,
  • FANG Yibo ,
  • YAN Yuhao ,
  • LIU Ying ,
  • OUYANG Hongsheng ,
  • GUO Zhikai ,
  • HAN Xiaohong
Expand
  • 1. Key Laboratory of Refrigeration and Cryogenic Technology of Zhejiang Province, Institute of Refrigeration and Cryogenics, Zhejiang University, Hangzhou 310027, China
    2. State Key Lab for Fluorine Greenhouse Gases Replacement and Control Treatment, Zhejiang Research Institute of Chemical Industry, Hangzhou 310014, China
    3. Zhejiang Key Laboratory of Clean Energy and Carbon Neutrality, Zhejiang University, Hangzhou 310027, China

Online published: 2024-04-30

Supported by

This work has been supported by the Nation Natural Science Foundation of China (Grant No. 52076185) and the Natural Science Foundation of Zhejiang Province (No. LZ19E060001).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

A suitable mixing rule is important for vapor liquid equilibrium (VLE) investigations for mixed refrigerants. In this work, a new excess free energy mixing rule (MRv) was proposed at zero pressure based on the linear relationship between dimensionless parameter 1/(u–1) and α. MRv mixing rule was explicit adopted variable liquid molar volume. The applicable temperature range of MRv could be extended by means of an empirical method to estimate the liquid molar volume for components at high temperatures. Three mixing rules modified Huron-Vidal mixing rule (MHV1), Wong-Sandler mixing rule (WS), and MRv at two reference pressures were used to compare the VLE data in the calculation of 37 mixed refrigerants. Results demonstrated that MRv had a relatively similar accuracy to MHV1 and WS for component and pressure calculation. Moreover, the average excess Gibbs free energy using the MRv mixing rule for the 37 selected mixed refrigerants (0.0013) was much lower than those using the MHV1 (0.0078) and WS (0.0809) mixing rules, which was very valuable for the design and optimization of thermodynamic systems using mixed refrigerants.

Cite this article

YE Gongran , FANG Yibo , YAN Yuhao , LIU Ying , OUYANG Hongsheng , GUO Zhikai , HAN Xiaohong . A New Excess Free Energy Mixing Rule for Representing Vapor-Liquid Equilibria of Mixed Refrigerants[J]. Journal of Thermal Science, 2024 , 33(3) : 1161 -1173 . DOI: 10.1007/s11630-024-1956-6

References

[1] McLinden M.O., Seeton C.J., Pearson A., New refrigerants and system configurations for vapor-compression refrigeration. Science, 2020, 370: 791–796.
[2] Heredia-Aricapa Y., Belman-Flores J.M., Mota-Babiloni A., Serrano-Arellano J., García-Pabón J.J., Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration, 2020, 111: 113–123.
[3] Liu J., Liu Y., Liu C., Xin L., Yu W., Experimental and theoretical study on thermal stability of mixture R1234ze(E)/R32 in organic Rankine cycle. Journal of Thermal Science, 2023, 32: 1595–1613.
[4] Kumma N., Kruthiventi S.S.H., Thermodynamic performance and flammability studies of hydrocarbon based low global warming potential refrigerant mixtures. Journal of Thermal Science, 2022, 31: 1487–1502.
[5] Wu W., Wang L., Li X., Liu H., Zhang H., Dou B., Phase equilibrium characteristics of CO2 and ionic liquids with [FAP]− anion used for absorption-compression refrigeration working pairs. Journal of Thermal Science, 2021, 30: 165–176.
[6] Bai M., Zhao L., Zhao R., Review on applications of zeotropic mixtures. Journal of Thermal Science, 2022, 31: 285–307.
[7] Huron M.-J., Vidal J., New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria, 1979, 3: 255–271.
[8] Michelsen M.L., A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilibria, 1990, 60: 213–219.
[9] Wong D.S.H., Sandler S.I., A theoretically correct mixing rule for cubic equations of state. AIChE Journal, 1992, 38: 671–680.
[10] Mollerup J., A note on the derivation of mixing rules from excess Gibbs energy models. Fluid Phase Equilibria, 1986, 25: 323–327.
[11] Dahl S., Michelsen M.L., High - pressure vapor - liquid equilibrium with a UNIFAC - based equation of state. AIChE Journal, 1990, 36: 1829–1836.
[12] Lin S.T., Hsieh M.T., Improper matching of solvation energy components in Gex-based mixing rules. Fluid Phase Equilibria, 2008, 269: 139–142.
[13] Djordjevic B., Kijevcanin M., Orlovic J., Serbanovic S., Mixing rules for excess free energy models. Journal of the Serbian Chemical Society, 2001, 66: 213–236.
[14] Peng D., Robinson D.B., A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 1976, 15: 59–64.
[15] Kontogeorgis G.M., Coutsikos P., Thirty years with EoS/GE models—what have we learned? Industrial & Engineering Chemistry Research, 2012, 51: 4119–4142.
[16] Michelsen M.L., A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilibria, 1990, 60: 213–219.
[17] Heidemann R.A., Kokal S.L., Combined excess free energy models and equations of state. Fluid Phase Equilibria, 1990, 56: 17–37.
[18] Renon H., Prausnitz J.M., Local Compositions in thermodynamic excess functions for liquid mixtures. AICHE Journal, 1968, 14: 135–144.
[19] E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, version 10.0, NIST, 2018.
[20] Tanaka K., Ishikawa J., Kontomaris K.K., Thermodynamic properties of HFO-1336mzz(E) (trans-1,1,1,4,4,4-hexafluoro-2-butene) at saturation conditions. International Journal of Refrigeration, 2017, 82: 283–287.
[21] Seong G., Yoo K., Lim J.S., Vapor-liquid equilibria for propane (R290) + n-Butane (R600) at various temperatures. Journal of Chemical & Engineering Data, 2008, 53: 2783–2786.
[22] Clark A.Q., Stead K., (Vapour+liquid) phase equilibria of binary, ternary, and quaternary mixtures of CH4, C2H6, C3H8, C4H10, and CO2. The Journal of Chemical Thermodynamics, 1988, 20: 413–427.
[23] Lim J.S., Park J.Y., Lee K.S., Kim J.D., Lee B.G., Measurement of vapor-liquid equilibria for the binary mixture of pentafluoroethane (HFC-125)+propane (R-290). Journal of Chemical and Engineering Data, 2004, 49: 750–755.
[24] Kayukawa Y., Fiyii K., Higashi Y., Vapor-liquid equilibrium (VLB) properties for the binary systems propane (1)+re-butane (2) and propane (1)+isobutane (3). Journal of Chemical and Engineering Data, 2005, 50: 579–582.
[25] Dong X., Gong M., Shen J., Wu J., Experimental measurement of vapor-liquid equilibrium for (trans-1,3,3,3-tetrafluoropropene (R1234ze(E))+propane (R290)). International Journal of Refrigeration, 2011, 34: 1238–1243.
[26] Gong M., Guo H., Dong X., Li H., Wu J., (Vapor + liquid) phase equilibrium measurements for {trifluoroiodomethane (R13I1)+propane (R290)} from  T=(258.150 to 283.150) K. Journal of Chemical Thermodynamics, 2014, 79: 167–170.
[27] Bobbo S., Stryjek R., Elvassore N., Bertucco A., A recirculation apparatus for vapor-liquid equilibrium measurements of refrigerants. Binary mixtures of R600a, R134a and R236fa. Fluid Phase Equilibria, 1998, 150: 343–352.
[28] Lim J.S., Park J.Y., Lee B.G., Lee Y.W., Kim J.D., Phase equilibria of CFC alternative refrigerant mixtures: binary systems of isobutane + 1,1,1,2-tetrafluoroethane, + 1,1-difluoroethane, and + difluoromethane. Journal of Chemical and Engineering Data, 1999, 44: 1226–1230.
[29] Hu P., Chen L.X., Chen Z.S., Vapor-liquid equilibria for binary system of 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) +isobutane (HC-600a). Fluid Phase Equilibria, 2014, 365: 1–4.
[30] Dong X., Gong M., Shen J., Wu J., Vapor-liquid equilibria of the trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) + isobutane (R600a) system at various temperatures from (258.150 to 288.150) K. Journal of Chemical and Engineering Data, 2012, 57: 541–544.
[31] Guo H., Gong M., Dong X., Wu J., Measurements of (vapour+liquid) equilibrium data for {trifluoroiodomethane (R13I1)+isobutane (R600a)} at temperatures between (263.150 and 293.150) K. Journal of Chemical Thermodynamics, 2013, 58: 428–431.
[32] Han X., Chen G., Cui X., Wang Q., Vapor-liquid equilibrium data for the binary mixture Difluoroethane (HFC-32)+Pentafluoroethane (HFC-125) of an alternative refrigerant. Journal of Chemical & Engineering Data, 2008, 53: 1046–1046.
[33] Jung M.Y., Kim C.N., Park Y.M., Yoo J.S., Vapor-liquid equilibria for the difluoromethane (HFC-32)+ pentafluoroethane (HFC-125) system. Journal of Chemical and Engineering Data, 2001, 46: 750–753.
[34] Kato R., Nishiumi H., Vapor-liquid equilibria and critical loci of binary and ternary systems composed of CH2F2, C2HF5 and C2H2F4. Fluid Phase Equilibria, 2006, 249: 140–146.
[35] Han X.H., Gao Z.J., Xu Y.J., Qiu Y., Min X.W., Wang Q., Chen G.M., Isothermal vapor-liquid equilibrium data for the binary mixture difluoromethane (HFC-32)+ethyl fluoride (HFC-161) over a temperature range from 253.15 K to 303.15 K. Fluid Phase Equilibria, 2010, 299: 116–121.
[36] Hu X., Yang T., Meng X., Bi S., Wu J., Vapor liquid equilibrium measurements for difluoromethane (R32) + 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and fluoroethane (R161) + 2,3,3,3-tetrafluoroprop-1-ene (R1234yf). Fluid Phase Equilibria, 2017, 438: 10–17.
[37] Kamiaka T., Dang C., Hihara E., Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a. International Journal of Refrigeration, 2013, 36: 965–971.
[38] Han X.H., Chen G.M., Li C.S., Qiao X.G., Cui X.L., Wang Q., Isothermal vapor-liquid equilibrium of (pentafluoroethane+fluoroethane) at temperatures between (265.15 and 303.15) K obtained with a recirculating still. Journal of Chemical & Engineering Data, 2006, 51: 1232–1235.
[39] Kamiaka T., Dang C., Hihara E., Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a. International Journal of Refrigeration, 2013, 36: 965–971.
[40] Kim C.-N., Lee E.-H., Park Y.-M., Yoo J., Kim K.-H., Lim J.-S., Lee B.-G., Vapor-liquid equilibria for the 1,1,1 -trifluoroethane (HFC-143a) + 1,1,1,2- tetrafluoroethane (hfc-134a) system. International Journal of Thermophysics, 2000, 21: 871–881.
[41] Lim J.S., Park J.Y., Lee B.G., Lee Y.W., Phase equilibria of 1,1,1-trifluoroethane (HFC-143a) + 1,1,1,2- tetrafluoroethane (HFC-134a), and +1,1-difluoroethane (HFC-152a) at 273.15, 293.15, 303.15, and 313.15 K. Fluid Phase Equilibria, 2002, 193: 29–39.
[42] Wang Q., Gao Z.J., Xu Y.J., Han X.H., Chen G.M., Isothermal vapor-liquid equilibrium data for the binary mixture trifluoroethane (HFC-143a) + ethyl fluoride (HFC-161) over the temperature range (253.15 to 303.15) K. Journal of Chemical & Engineering Data, 2010, 55: 2990–2993.
[43] Dong X., Gong M., Zhang Y., Wu J., Vapor-liquid equilibria of the Fluoroethane (R161) + 1,1,1,2-Tetrafluoroethane (R134a) system at various temperatures from (253.15 to 292.92) K. Journal of Chemical & Engineering Data, 2008, 53: 2193–2196.
[44] Bobbo S., Fedele L., Scattolini M., Camporese R., Isothermal VLE measurements for the binary mixtures HFC-134a + HFC-245fa and HC-600a+HFC-245fa. Fluid Phase Equilibria, 2001, 185: 255–264.
[45] Yang L., Gong M., Guo H., Dong X., Wu J., (Vapour + liquid) equilibrium data for the {1,1-difluoroethane (R152a)+1,1,1,3,3-pentafluoropropane (R245fa)} system at temperatures from (323.150 to 353.150) K. Journal of Chemical Thermodynamics, 2015, 91: 414–419.
[46] Hu P., Chen L.X., Zhu W.B., Jia L., Chen Z.S., Isothermal VLE measurements for the binary mixture of 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) + 1,1- difluoroethane (HFC-152a). Fluid Phase Equilibria, 2014, 373: 80–83.
[47] Yang Z., Gong M., Guo H., Dong X., Wu J., Phase equilibrium for the binary mixture of {1,1-difluoroethane (R152a)+trans-1,3,3,3-tetrafluoropropene (R1234ze (E))} at various temperatures from 258.150 to 288.150 K. Fluid Phase Equilibria, 2013, 355: 99–103.
[48] Gong M., Cheng K., Dong X., Guo H., Zhao Y., Wu J., Measurements of isothermal (vapor+liquid) phase equilibrium for {trifluoroiodomethane (R13I1) + 1,1- difluoroethane (R152a)} from T=(258.150 to 283.150) K. Journal of Chemical Thermodynamics, 2015, 88: 90–95.
[49] Meng X., Hu X., Yang T., Wu J., Vapor liquid equilibria for binary mixtures of difluoromethane (R32)+ fluoroethane (R161) and fluoroethane (R161)+ trans-1,3,3,3-tetrafluoropropene (R1234ze(E)). Journal of Chemical Thermodynamics, 2018, 118: 43–50.
[50] Fang Y., Ye G., Ni H., Jiang Q., Bao K., Han X., Chen G., Vapor-Liquid Equilibrium for the Binary Systems 1,1,2,3,3,3-Hexafluoro-1-propene (R1216) + 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and 1,1,2,3,3,3-Hexafluoro-1-propene (R1216) + trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)). Journal of Chemical and Engineering Data, 2020, 65: 4215–4222.
[51] Guo H., Gong M., Dong X., Wu J., (Vapour + liquid) equilibrium data for the binary system of {trifluoroiodomethane (R13I1) + trans-1,3,3,3- tetrafluoropropene (R1234ze (E))} at various temperatures from (258.150 to 298.150) K. Journal of Chemical Thermodynamics, 2012, 47: 397–401.
[52] Boonaert E., Valtz A., Brocus J., Coquelet C., Beucher Y., De Carlan F., Fourmigué J.M., Vapor-liquid equilibrium measurements for 5 binary mixtures involving HFO-1336mzz(E) at temperatures from 313 to 353 K and pressures up to 2.735 MPa. International Journal of Refrigeration, 2020, 114: 210–220.
[53] Yang W., He G., Zhang Z., Wang Z., Li X., Vapor-liquid equilibrium for the binary mixed refrigerant {R1234ze(E) +R1336mzz(E)} at temperatures from 283.15 K to 313.15 K. Journal of Chemical Thermodynamics, 2023, 185: 107095.
[54] Ye G., Fang Y., Guo Z., Ni H., Zhuang Y., Han X., Chen G., Experimental investigation of vapor-liquid equilibrium for 2,3,3,3-tetrafluoropropene (HFO-1234yf) +trans -1,3,3,3-tetrafluoropropene (HFO-1234ze(E)) at temperatures from 284 to 334 K. Journal of Chemical & Engineering Data, 2021, 66: 1741–1753.
Outlines

/