[1] McLinden M.O., Seeton C.J., Pearson A., New refrigerants and system configurations for vapor-compression refrigeration. Science, 2020, 370: 791–796.
[2] Heredia-Aricapa Y., Belman-Flores J.M., Mota-Babiloni A., Serrano-Arellano J., García-Pabón J.J., Overview of low GWP mixtures for the replacement of HFC refrigerants: R134a, R404A and R410A. International Journal of Refrigeration, 2020, 111: 113–123.
[3] Liu J., Liu Y., Liu C., Xin L., Yu W., Experimental and theoretical study on thermal stability of mixture R1234ze(E)/R32 in organic Rankine cycle. Journal of Thermal Science, 2023, 32: 1595–1613.
[4] Kumma N., Kruthiventi S.S.H., Thermodynamic performance and flammability studies of hydrocarbon based low global warming potential refrigerant mixtures. Journal of Thermal Science, 2022, 31: 1487–1502.
[5] Wu W., Wang L., Li X., Liu H., Zhang H., Dou B., Phase equilibrium characteristics of CO2 and ionic liquids with [FAP]− anion used for absorption-compression refrigeration working pairs. Journal of Thermal Science, 2021, 30: 165–176.
[6] Bai M., Zhao L., Zhao R., Review on applications of zeotropic mixtures. Journal of Thermal Science, 2022, 31: 285–307.
[7] Huron M.-J., Vidal J., New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures. Fluid Phase Equilibria, 1979, 3: 255–271.
[8] Michelsen M.L., A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilibria, 1990, 60: 213–219.
[9] Wong D.S.H., Sandler S.I., A theoretically correct mixing rule for cubic equations of state. AIChE Journal, 1992, 38: 671–680.
[10] Mollerup J., A note on the derivation of mixing rules from excess Gibbs energy models. Fluid Phase Equilibria, 1986, 25: 323–327.
[11] Dahl S., Michelsen M.L., High - pressure vapor - liquid equilibrium with a UNIFAC - based equation of state. AIChE Journal, 1990, 36: 1829–1836.
[12] Lin S.T., Hsieh M.T., Improper matching of solvation energy components in Gex-based mixing rules. Fluid Phase Equilibria, 2008, 269: 139–142.
[13] Djordjevic B., Kijevcanin M., Orlovic J., Serbanovic S., Mixing rules for excess free energy models. Journal of the Serbian Chemical Society, 2001, 66: 213–236.
[14] Peng D., Robinson D.B., A new two-constant equation of state. Industrial & Engineering Chemistry Fundamentals, 1976, 15: 59–64.
[15] Kontogeorgis G.M., Coutsikos P., Thirty years with EoS/GE models—what have we learned? Industrial & Engineering Chemistry Research, 2012, 51: 4119–4142.
[16] Michelsen M.L., A modified Huron-Vidal mixing rule for cubic equations of state. Fluid Phase Equilibria, 1990, 60: 213–219.
[17] Heidemann R.A., Kokal S.L., Combined excess free energy models and equations of state. Fluid Phase Equilibria, 1990, 56: 17–37.
[18] Renon H., Prausnitz J.M., Local Compositions in thermodynamic excess functions for liquid mixtures. AICHE Journal, 1968, 14: 135–144.
[19] E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, version 10.0, NIST, 2018.
[20] Tanaka K., Ishikawa J., Kontomaris K.K., Thermodynamic properties of HFO-1336mzz(E) (trans-1,1,1,4,4,4-hexafluoro-2-butene) at saturation conditions. International Journal of Refrigeration, 2017, 82: 283–287.
[21] Seong G., Yoo K., Lim J.S., Vapor-liquid equilibria for propane (R290) + n-Butane (R600) at various temperatures. Journal of Chemical & Engineering Data, 2008, 53: 2783–2786.
[22] Clark A.Q., Stead K., (Vapour+liquid) phase equilibria of binary, ternary, and quaternary mixtures of CH4, C2H6, C3H8, C4H10, and CO2. The Journal of Chemical Thermodynamics, 1988, 20: 413–427.
[23] Lim J.S., Park J.Y., Lee K.S., Kim J.D., Lee B.G., Measurement of vapor-liquid equilibria for the binary mixture of pentafluoroethane (HFC-125)+propane (R-290). Journal of Chemical and Engineering Data, 2004, 49: 750–755.
[24] Kayukawa Y., Fiyii K., Higashi Y., Vapor-liquid equilibrium (VLB) properties for the binary systems propane (1)+re-butane (2) and propane (1)+isobutane (3). Journal of Chemical and Engineering Data, 2005, 50: 579–582.
[25] Dong X., Gong M., Shen J., Wu J., Experimental measurement of vapor-liquid equilibrium for (trans-1,3,3,3-tetrafluoropropene (R1234ze(E))+propane (R290)). International Journal of Refrigeration, 2011, 34: 1238–1243.
[26] Gong M., Guo H., Dong X., Li H., Wu J., (Vapor + liquid) phase equilibrium measurements for {trifluoroiodomethane (R13I1)+propane (R290)} from T=(258.150 to 283.150) K. Journal of Chemical Thermodynamics, 2014, 79: 167–170.
[27] Bobbo S., Stryjek R., Elvassore N., Bertucco A., A recirculation apparatus for vapor-liquid equilibrium measurements of refrigerants. Binary mixtures of R600a, R134a and R236fa. Fluid Phase Equilibria, 1998, 150: 343–352.
[28] Lim J.S., Park J.Y., Lee B.G., Lee Y.W., Kim J.D., Phase equilibria of CFC alternative refrigerant mixtures: binary systems of isobutane + 1,1,1,2-tetrafluoroethane, + 1,1-difluoroethane, and + difluoromethane. Journal of Chemical and Engineering Data, 1999, 44: 1226–1230.
[29] Hu P., Chen L.X., Chen Z.S., Vapor-liquid equilibria for binary system of 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) +isobutane (HC-600a). Fluid Phase Equilibria, 2014, 365: 1–4.
[30] Dong X., Gong M., Shen J., Wu J., Vapor-liquid equilibria of the trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) + isobutane (R600a) system at various temperatures from (258.150 to 288.150) K. Journal of Chemical and Engineering Data, 2012, 57: 541–544.
[31] Guo H., Gong M., Dong X., Wu J., Measurements of (vapour+liquid) equilibrium data for {trifluoroiodomethane (R13I1)+isobutane (R600a)} at temperatures between (263.150 and 293.150) K. Journal of Chemical Thermodynamics, 2013, 58: 428–431.
[32] Han X., Chen G., Cui X., Wang Q., Vapor-liquid equilibrium data for the binary mixture Difluoroethane (HFC-32)+Pentafluoroethane (HFC-125) of an alternative refrigerant. Journal of Chemical & Engineering Data, 2008, 53: 1046–1046.
[33] Jung M.Y., Kim C.N., Park Y.M., Yoo J.S., Vapor-liquid equilibria for the difluoromethane (HFC-32)+ pentafluoroethane (HFC-125) system. Journal of Chemical and Engineering Data, 2001, 46: 750–753.
[34] Kato R., Nishiumi H., Vapor-liquid equilibria and critical loci of binary and ternary systems composed of CH2F2, C2HF5 and C2H2F4. Fluid Phase Equilibria, 2006, 249: 140–146.
[35] Han X.H., Gao Z.J., Xu Y.J., Qiu Y., Min X.W., Wang Q., Chen G.M., Isothermal vapor-liquid equilibrium data for the binary mixture difluoromethane (HFC-32)+ethyl fluoride (HFC-161) over a temperature range from 253.15 K to 303.15 K. Fluid Phase Equilibria, 2010, 299: 116–121.
[36] Hu X., Yang T., Meng X., Bi S., Wu J., Vapor liquid equilibrium measurements for difluoromethane (R32) + 2,3,3,3-tetrafluoroprop-1-ene (R1234yf) and fluoroethane (R161) + 2,3,3,3-tetrafluoroprop-1-ene (R1234yf). Fluid Phase Equilibria, 2017, 438: 10–17.
[37] Kamiaka T., Dang C., Hihara E., Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a. International Journal of Refrigeration, 2013, 36: 965–971.
[38] Han X.H., Chen G.M., Li C.S., Qiao X.G., Cui X.L., Wang Q., Isothermal vapor-liquid equilibrium of (pentafluoroethane+fluoroethane) at temperatures between (265.15 and 303.15) K obtained with a recirculating still. Journal of Chemical & Engineering Data, 2006, 51: 1232–1235.
[39] Kamiaka T., Dang C., Hihara E., Vapor-liquid equilibrium measurements for binary mixtures of R1234yf with R32, R125, and R134a. International Journal of Refrigeration, 2013, 36: 965–971.
[40] Kim C.-N., Lee E.-H., Park Y.-M., Yoo J., Kim K.-H., Lim J.-S., Lee B.-G., Vapor-liquid equilibria for the 1,1,1 -trifluoroethane (HFC-143a) + 1,1,1,2- tetrafluoroethane (hfc-134a) system. International Journal of Thermophysics, 2000, 21: 871–881.
[41] Lim J.S., Park J.Y., Lee B.G., Lee Y.W., Phase equilibria of 1,1,1-trifluoroethane (HFC-143a) + 1,1,1,2- tetrafluoroethane (HFC-134a), and +1,1-difluoroethane (HFC-152a) at 273.15, 293.15, 303.15, and 313.15 K. Fluid Phase Equilibria, 2002, 193: 29–39.
[42] Wang Q., Gao Z.J., Xu Y.J., Han X.H., Chen G.M., Isothermal vapor-liquid equilibrium data for the binary mixture trifluoroethane (HFC-143a) + ethyl fluoride (HFC-161) over the temperature range (253.15 to 303.15) K. Journal of Chemical & Engineering Data, 2010, 55: 2990–2993.
[43] Dong X., Gong M., Zhang Y., Wu J., Vapor-liquid equilibria of the Fluoroethane (R161) + 1,1,1,2-Tetrafluoroethane (R134a) system at various temperatures from (253.15 to 292.92) K. Journal of Chemical & Engineering Data, 2008, 53: 2193–2196.
[44] Bobbo S., Fedele L., Scattolini M., Camporese R., Isothermal VLE measurements for the binary mixtures HFC-134a + HFC-245fa and HC-600a+HFC-245fa. Fluid Phase Equilibria, 2001, 185: 255–264.
[45] Yang L., Gong M., Guo H., Dong X., Wu J., (Vapour + liquid) equilibrium data for the {1,1-difluoroethane (R152a)+1,1,1,3,3-pentafluoropropane (R245fa)} system at temperatures from (323.150 to 353.150) K. Journal of Chemical Thermodynamics, 2015, 91: 414–419.
[46] Hu P., Chen L.X., Zhu W.B., Jia L., Chen Z.S., Isothermal VLE measurements for the binary mixture of 2,3,3,3-tetrafluoroprop-1-ene (HFO-1234yf) + 1,1- difluoroethane (HFC-152a). Fluid Phase Equilibria, 2014, 373: 80–83.
[47] Yang Z., Gong M., Guo H., Dong X., Wu J., Phase equilibrium for the binary mixture of {1,1-difluoroethane (R152a)+trans-1,3,3,3-tetrafluoropropene (R1234ze (E))} at various temperatures from 258.150 to 288.150 K. Fluid Phase Equilibria, 2013, 355: 99–103.
[48] Gong M., Cheng K., Dong X., Guo H., Zhao Y., Wu J., Measurements of isothermal (vapor+liquid) phase equilibrium for {trifluoroiodomethane (R13I1) + 1,1- difluoroethane (R152a)} from T=(258.150 to 283.150) K. Journal of Chemical Thermodynamics, 2015, 88: 90–95.
[49] Meng X., Hu X., Yang T., Wu J., Vapor liquid equilibria for binary mixtures of difluoromethane (R32)+ fluoroethane (R161) and fluoroethane (R161)+ trans-1,3,3,3-tetrafluoropropene (R1234ze(E)). Journal of Chemical Thermodynamics, 2018, 118: 43–50.
[50] Fang Y., Ye G., Ni H., Jiang Q., Bao K., Han X., Chen G., Vapor-Liquid Equilibrium for the Binary Systems 1,1,2,3,3,3-Hexafluoro-1-propene (R1216) + 2,3,3,3-Tetrafluoroprop-1-ene (R1234yf) and 1,1,2,3,3,3-Hexafluoro-1-propene (R1216) + trans-1,3,3,3-Tetrafluoropropene (R1234ze(E)). Journal of Chemical and Engineering Data, 2020, 65: 4215–4222.
[51] Guo H., Gong M., Dong X., Wu J., (Vapour + liquid) equilibrium data for the binary system of {trifluoroiodomethane (R13I1) + trans-1,3,3,3- tetrafluoropropene (R1234ze (E))} at various temperatures from (258.150 to 298.150) K. Journal of Chemical Thermodynamics, 2012, 47: 397–401.
[52] Boonaert E., Valtz A., Brocus J., Coquelet C., Beucher Y., De Carlan F., Fourmigué J.M., Vapor-liquid equilibrium measurements for 5 binary mixtures involving HFO-1336mzz(E) at temperatures from 313 to 353 K and pressures up to 2.735 MPa. International Journal of Refrigeration, 2020, 114: 210–220.
[53] Yang W., He G., Zhang Z., Wang Z., Li X., Vapor-liquid equilibrium for the binary mixed refrigerant {R1234ze(E) +R1336mzz(E)} at temperatures from 283.15 K to 313.15 K. Journal of Chemical Thermodynamics, 2023, 185: 107095.
[54] Ye G., Fang Y., Guo Z., Ni H., Zhuang Y., Han X., Chen G., Experimental investigation of vapor-liquid equilibrium for 2,3,3,3-tetrafluoropropene (HFO-1234yf) +trans -1,3,3,3-tetrafluoropropene (HFO-1234ze(E)) at temperatures from 284 to 334 K. Journal of Chemical & Engineering Data, 2021, 66: 1741–1753.