[1]
Wang W., Sun B., Li H., et al., An improved min-max power dispatching method for integration of variable renewable energy. Applied Energy, 2020, 276: 115430.
[2]
Blomgren G.E., The development and future of lithium ion batteries. Journal of the Electrochemical Society, 2016, 164(1): A5019.
[3]
Han X., Lu L., Zheng Y., et al., A review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation, 2019, 1: 100005.
[4]
Rivera-Barrera J.P., Muñoz-Galeano N., Sarmiento-Maldonado H.O., SOC estimation for lithium-ion batteries: Review and future challenges. Electronics, 2017, 6(4): 102.
[5]
Reniers J.M., Mulder G., Howey D.A., Review and performance comparison of mechanical-chemical degradation models for lithium-ion batteries. Journal of the Electrochemical Society, 2019, 166(14): A3189–A3200.
[6]
Li J., Murphy E., Winnick J., et al., Studies on the cycle life of commercial lithium ion batteries during rapid charge-discharge cycling. Journal of Power Sources, 2001, 102(1–2): 294–301.
[7]
Schuster S.F., Bach T., Fleder E., et al., Nonlinear aging characteristics of lithium-ion cells under different operational conditions. Journal of Energy Storage, 2015, 1: 44–53.
[8]
Zheng Y., Ouyang M., Lu L., et al., Understanding aging mechanisms in lithium-ion battery packs: From cell capacity loss to pack capacity evolution. Journal of Power Sources, 2015, 278: 287–295.
[9]
Barré A., Deguilhem B., Grolleau S., et al., A review on lithium-ion battery ageing mechanisms and estimations for automotive applications. Journal of Power Sources, 2013, 241: 680–689.
[10]
Delacourt C., Safari M., Mathematical modeling of aging of Li-ion batteries, physical multiscale modeling and numerical simulation of electrochemical devices for energy conversion and storage. Green Energy and Technology, Springer, 2016, pp. 151–190.
[11]
Suri G., Onori S., A control-oriented cycle-life model for hybrid electric vehicle lithium-ion batteries. Energy, 2016, 96: 644–653.
[12]
Jung D.H., Kim D.M., Park J., et al., Cycle-life prediction model of lithium iron phosphate-based lithium-ion battery module. International Journal of Energy Research, 2021, 45(11): 16489–16496.
[13]
Gao Y., Jiang J., Zhang C., et al., Lithium-ion battery aging mechanisms and life model under different charging stresses. Journal of Power Sources, 2017, 356: 103–114.
[14]
Ren L., Zhao L., Hong S., et al., Remaining useful life prediction for lithium-ion battery: A deep learning approach. IEEE Access, 2018, 6: 50587–50598.
[15]
Severson K.A., Attia P.M., Jin N., et al., Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 2019, 4(5): 383–391.
[16]
Dubarry M., Qin N., Brooker P., Calendar aging of commercial Li-ion cells of different chemistries—A review. Current Opinion in Electrochemistry, 2018, 9: 106–113.
[17]
Sarasketa-Zabala E., Gandiaga I., Rodriguez-Martinez L.M., et al., Calendar ageing analysis of a LiFePO4/graphite cell with dynamic model validations: Towards realistic lifetime predictions. Journal of Power Sources, 2014, 272: 45–57.
[18]
Ecker M., Gerschler J.B., Vogel J., et al., Development of a lifetime prediction model for lithium-ion batteries based on extended accelerated aging test data. Journal of Power Sources, 2012, 215: 248–257.
[19]
Buchberger I., Seidlmayer S., Pokharel A., et al., Aging analysis of graphite/LiNi1/3Mn1/3Co1/3O2 cells using XRD, PGAA, and AC impedance. Journal of the Electrochemical Society, 2015, 162(14): A2737.
[20]
Li D., Danilov D.L., Gao L., et al., Degradation mechanisms of the graphite electrode in C6/LiFePO4 batteries unraveled by a non-destructive approach. Journal of the Electrochemical Society, 2016, 163(14): A3016.
[21]
Matadi B.P., Geniès S., Delaille A., et al., Effects of biphenyl polymerization on lithium deposition in commercial graphite/NMC lithium-ion pouch-cells during calendar aging at high temperature. Journal of the Electrochemical Society, 2017, 164(6): A1089.
[22]
Redondo-Iglesias E., Venet P., Pelissier S., Eyring acceleration model for predicting calendar ageing of lithium-ion batteries. Journal of Energy Storage, 2017, 13: 176–183.
[23]
Ecker M., Nieto N., Käbitz S., et al., Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries. Journal of Power Sources, 2014, 248: 839–851.
[24]
Lyu P., Huo Y., Qu Z., et al., Investigation on the thermal behavior of Ni-rich NMC lithium ion battery for energy storage. Applied Thermal Engineering, 2020, 166: 114749.
[25]
Jaguemont J., Boulon L., Venet P., et al., Low temperature aging tests for lithium-ion batteries. 2015 IEEE 24th International Symposium on Industrial Electronics (ISIE), IEEE, 2015: 1284–1289.
DOI: 10.1109/ISIE.2015.7281657.
[26]
Ecker M., Nieto N., Käbitz S., et al., Calendar and cycle life study of Li(NiMnCo)O2-based 18650 lithium-ion batteries. Journal of Power Sources, 2014, 248: 839– 851.
[27]
Jaguemont J., Boulon L., Dubé Y., A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures. Applied Energy, 2016, 164: 99–114.
[28]
Berdichevsky G., Kelty K., Straubel J.B., et al., The tesla roadster battery system. Tesla Motors, 2006, 1(5): 1–5.
[29]
Saxena S., Hendricks C., Pecht M., Cycle life testing and modeling of graphite/LiCoO2 cells under different state of charge ranges. Journal of Power Sources, 2016, 327: 394–400.
[30]
Keil P., Schuster S.F., Wilhelm J., et al., Calendar aging of lithium-ion batteries. Journal of the Electrochemical Society, 2016, 163(9): A1872.
[31]
Zhang Q., White R.E., Calendar life study of Li-ion pouch cells. Journal of Power Sources, 2007, 173(2): 990–997.
[32]
Broussely M., Herreyre S., Biensan P., et al., Aging mechanism in Li ion cells and calendar life predictions. Journal of Power Sources, 2001, 97: 13–21.
[33]
Gyenes B., Stevens D.A., Chevrier V.L., et al., Understanding anomalous behavior in coulombic efficiency measurements on Li-ion batteries. Journal of the Electrochemical Society, 2014, 162(3): A278.
[34]
Lewerenz M., Münnix J., Schmalstieg J., et al., Systematic aging of commercial LiFePO4 Graphite cylindrical cells including a theory explaining rise of capacity during aging. Journal of Power Sources, 2017, 345: 254–263.
[35]
Lewerenz M., Fuchs G., Becker L., et al., Irreversible calendar aging and quantification of the reversible capacity loss caused by anode overhang. Journal of Energy Storage, 2018, 18: 149–159.
[36]
Schmitt J., Maheshwari A., Heck M., et al., Impedance change and capacity fade of lithium nickel manganese cobalt oxide-based batteries during calendar aging. Journal of Power Sources, 2017, 353: 183–194.
[37]
Liu Y., Xie K., Pan Y., et al., Simplified modeling and parameter estimation to predict calendar life of Li-ion batteries. Solid State Ionics, 2018, 320: 126–131.