[1] Han Y., Sun Y.Y., Wu J.J., An efficient solar-aided waste heat recovery system based on steam ejector and WTA pre-drying in solar/lignite hybrid power plants. Energy, 2020, 208: 118372.
[2] Li D., Zhao H., Kong F., et al., Application of ejector in solid oxide fuel cell anode circulation system. Journal of Thermal Science, 2022, 31: 634–649.
[3] Bai T., Liu Y., Yan G., et al., Theoretical performance analysis of an ejector enhanced high-temperature heat pump with dual-pressure condensation and evaporation. Journal of Thermal Science, 2022, 31: 1367–1379.
[4] Yang X., Long X., Yao X., Numerical investigation on the mixing process in a steam ejector with different nozzle structures. International Journal of Thermal Sciences, 2012, 56: 95–106.
[5] Zhu Y.H., Cai W.J., Wen C., Li Y., Numerical investigation of geometry parameters for design of high performance ejectors. Applied Thermal Engineering, 2009, 29: 898–905.
[6] Varga S., Oliveira A.C., Diaconu B., Influence of geometrical factors on steam ejector performance – A numerical assessment. International Journal of Refrigeration, 2009, 32: 1694–1701.
[7] Chen W.X., Chong D.T., Yan J.J., Liu J.P., The numerical analysis of the effect of geometrical factors on natural gas ejector performance. Applied Thermal Engineering, 2013, 59: 21–29.
[8] Banasiak K., Hafner A., Andresen T., Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump. International Journal of Refrigeration, 2012, 35: 1617–1625.
[9] Chen Z., Zhao H.X., Kong F.C., Liu G.D., Wang L., Lai Y.H., Synergistic effect of adjustable ejector structure and operating parameters in solar-driven ejector refrigeration system. Solar Energy, 2023, 250: 295–311.
[10] Wu Y.F., Zhao H.X., Zhang C.Q., Wang L., Han J.T., Optimization analysis of structure parameters of steam ejector based on CFD and orthogonal test. Energy, 2018, 151: 79–93.
[11] He Y., Deng J.Q., Li Y.F., Zhang X.P., Synergistic effect of geometric parameters on CO2 ejector based on local exergy destruction analysis. Applied Thermal Engineering, 2021, 184: 116256.
[12] Song W.L., Shen X.S., Huang Y.L., Jiang P.X., Zhu Y.H., Fuel ejector design and optimization for solid oxide fuel cells using response surface methodology and multi-objective genetic algorithm. Applied Thermal Engineering, 2023, 232: 121067.
[13] Li Y.F., Deng J.Q., He Y., Numerical study on the interaction of geometric parameters of a transcritical CO2 two-phase ejector using response surface methodology and genetic algorithm. Applied Thermal Engineering, 2022, 214: 118799.
[14] Palacz M., Smolka J., Nowak A.J., Banasiak K., Hafner A., Shape optimisation of a two-phase ejector for CO2 refrigeration systems. International Journal of Refrigeration, 2017, 74: 212–223.
[15] Gupta P., Kumar P., Rao S.M.V., Artificial neural network based shape optimization of supersonic ejectors in the critical flow regime. Applied Thermal Engineering, 2022, 216: 119046.
[16] Ariafar K., Buttsworth D., Sharifi N., Malpress R., Ejector primary nozzle steam condensation: Area ratio effects and mixing layer development. Applied Thermal Engineering, 2014, 71: 519–527.
[17] Li Z.M., Wang J.L., Zheng H.T., CFD simulation of the supersonic steam ejector. ASME 2010 4th International Conference on Energy Sustainability, 2010.
DOI: 10.1115/ES2010-90123
[18] Wang X.D., Dong J.L., Wang T., Tu J.Y., Numerical analysis of spontaneously condensing phenomena in nozzle of steam-jet vacuum pump. Vacuum, 2012, 86: 861–866.
[19] Varga S., Lebre P.M.S., Oliveira A.C., CFD study of a variable area ratio ejector using R600a and R152a refrigerants. International Journal of Refrigeration, 2013, 36: 157–165.
[20] Giacomelli F., Biferi G., Mazzelli F., Milazzo A., CFD modeling of the supersonic condensation inside a steam ejector. Energy Procedia, 2016, 101: 1224–1231.
[21] Yu M.H., Zhao H.X., Wang X., Han J.T., Lai Y.H, Investigation on the performance of the pump-free double heat source ejector refrigeration system with R1234yf. Journal of Thermal Science, 2020, 31: 1452–1464.
[22] Ameur K., Aidoun Z., Ouzzane M., Modeling and numerical approach for the design and operation of two-phase ejectors. Applied Thermal Engineering, 2016, 109: 809–818.
[23] Lucas C., Rusche H., Schroeder A., Koehler J., Numerical investigation of a two-phase CO2 ejector. International Journal of Refrigeration, 2014, 43: 154– 166.
[24] Smolka J., Bulinski Z., Fic A., Nowak A.J., Banasiak K., Hafner A., A computational model of a transcritical R744 ejector based on a homogeneous real fluid approach. Applied Mathematical Modelling, 2013, 37: 1208–1224.
[25] Bell I.H., Wronski J., Quoilin S., Lemort V., Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical property library CoolProp. Industrial & Engineering Chemistry Research, 2014, 53: 2498–2508.
[26] Yu M.H., Wang C., Wang L., Zhao H.X., Optimization design and performance evaluation of R1234yf ejectors for ejector-based refrigeration systems. Entropy (Basel), 2022, 24(11): 1632.
[27] Bartosiewicz Y., Aidoun Z., Desevaux P., Mercadier Y., Numerical and experimental investigations on supersonic ejectors. International Journal of Heat and Fluid Flow, 2005, 26: 56–70.
[28] Colarossi M., Trask N., Schmidt D.P., Bergander M.J., Multidimensional modeling of condensing two-phase ejector flow. International Journal of Refrigeration, 2012, 35: 290–299.
[29] Pianthong K., Seehanam W., Behnia M., Sriveerakul T., Aphornratana S., Investigation and improvement of ejector refrigeration system using computational fluid dynamics technique. Energy Conversion and Management, 2007, 48: 2556–2564.
[30] Elbel S., Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. International Journal of Refrigeration, 2011, 34: 1545–1561.
[31] Chen Y.M., Sun C.Y., Experimental study of the performance characteristics of a steam-ejector refrigeration system. Experimental Thermal and Fluid Science, 1997, 15(4): 384–394.
[32] Arjmandi H., Amiri P., Saffari Pour M., Geometric optimization of a double pipe heat exchanger with combined vortex generator and twisted tape: A CFD and response surface methodology (RSM) study. Thermal Science and Engineering Progress, 2020, 18: 100514.
[33] Sun X., Kim S., Yang S.D., Kim H.S., Yoon J.Y., Multi-objective optimization of a Stairmand cyclone separator using response surface methodology and computational fluid dynamics. Powder Technology, 2017, 320: 51–65.
[34] Elsayed K., Lacor C., Modeling, analysis and optimization of aircyclones using artificial neural network, response surface methodology and CFD simulation approaches. Powder Technology, 2011, 212: 115–133.
[35] Liu G., Zhao H., Wang Z., et al., Performance study and multi-objective optimization of a two-temperature co2 refrigeration system with economizer based on energetic, exergetic and economic analysis. Journal of Thermal Science, 2022, 31: 1416–1433.
[36] Li F.L., Li R.G., Li X.C., Tian Q., Experimental investigation on a R134a ejector refrigeration system under overall modes. Applied Thermal Engineering, 2018, 137: 784–791.