[1] Tauseef-ur-R., Ali H.M., Janjua M.M., et al., A critical review on heat transfer augmentation of phase change materials embedded with porous materials/foams. International Journal of Heat and Mass Transfer, 2019, 135: 649–673.
[2] Zhao C., Opolot M., Liu M., et al., Simulations of melting performance enhancement for a PCM embedded in metal periodic structures. International Journal of Heat and Mass Transfer, 2021, 168: 120853.
[3] Mao Q., Chen H., Yang Y., Energy storage performance of a PCM in the solar storage tank. Journal of Thermal Science, 2019, 28(2): 195–203.
[4] Ling Z., Zhang Z., Shi G., et al., Review on thermal management systems using phase change materials for electronic components, Li-ion batteries and photovoltaic modules. Renewable and Sustainable Energy Reviews, 2014, 31: 427–438.
[5] Cui Y., Liu C., Hu S., et al., The experimental exploration of carbon nanofiber and carbon nanotube additives on thermal behavior of phase change materials. Solar Energy Materials and Solar Cells, 2011, 95(4): 1208–1212.
[6] Siahpush A., O’brien J., Crepeau J., Phase change heat transfer enhancement using copper porous foam. Journal of Heat Transfer, 2008, 130(8): 082301.
[7] Ramakrishnan S., Wang X., Sanjayan J., Effects of various carbon additives on the thermal storage performance of form-stable PCM integrated cementitious composites. Applied Thermal Engineering, 2019, 148: 491–501.
[8] Ji C., Qin Z., Dubey S., et al., Simulation on PCM melting enhancement with double-fin length arrangements in a rectangular enclosure induced by natural convection. International Journal of Heat and Mass Transfer, 2018, 127: 255–265.
[9] Kamkari B., Groulx D., Experimental investigation of melting behaviour of phase change material in finned rectangular enclosures under different inclination angles. Experimental Thermal and Fluid Science, 2018, 97: 94–108.
[10] Ye W.-B., Guo H.-J., Huang S.-M., et al., Research on melting and solidification processes for enhanced double tubes with constant wall temperature/wall heat flux. Heat Transfer-Asian Research, 2018, 47(3): 583–599.
[11] Ibrahim N.I., Al-Sulaiman F.A., Rahman S., et al., Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renewable and Sustainable Energy Reviews, 2017, 74: 26–50.
[12] Fan L., Khodadadi J.M., Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 2011, 15(1): 24–46.
[13] Liu L., Su D., Tang Y., et al., Thermal conductivity enhancement of phase change materials for thermal energy storage: A review. Renewable and Sustainable Energy Reviews, 2016, 62: 305–317.
[14] Yang X., Bai Q., Guo Z., et al., Comparison of direct numerical simulation with volume-averaged method on composite phase change materials for thermal energy storage. Applied Energy, 2018, 229: 700–714.
[15] Deng S., Nie C., Wei G., et al., Improving the melting performance of a horizontal shell-tube latent-heat thermal energy storage unit using local enhanced finned tube. Energy and Buildings, 2019, 183: 161–173.
[16] Saha S.K., Dutta P., Role of melt convection on optimization of PCM-based heat sink under cyclic heat load. Heat Transfer Engineering, 2013, 34(11–12): 950–958.
[17] Nayak K.C., Saha S.K., Srinivasan K., et al., A numerical model for heat sinks with phase change materials and thermal conductivity enhancers. International Journal of Heat and Mass Transfer, 2006, 49(11–12): 1833–1844.
[18] Feng S., Shi M., Li Y., et al., Pore-scale and volume-averaged numerical simulations of melting phase change heat transfer in finned metal foam. International Journal of Heat and Mass Transfer, 2015, 90: 838– 847.
[19] Guo J., Liu Z., Du Z., et al., Effect of fin-metal foam structure on thermal energy storage: An experimental study. Renewable Energy, 2021, 172: 57–70.
[20] Yang X., Niu Z., Guo J., et al., Role of pin fin-metal foam composite structure in improving solidification: Performance evaluation. International Communications in Heat and Mass Transfer, 2020, 117: 104775.
[21] Zhu F., Zhang C., Gong X., Numerical analysis on the energy storage efficiency of phase change material embedded in finned metal foam with graded porosity. Applied Thermal Engineering, 2017, 123: 256–265.
[22] Ghahremannezhad A., Xu H., Salimpour M.R., et al., Thermal performance analysis of phase change materials (PCMs) embedded in gradient porous metal foams. Applied Thermal Engineering, 2020, 179: 115731.
[23] Yang J., Yang L., Xu C., et al., Numerical analysis on thermal behavior of solid-liquid phase change within copper foam with varying porosity. International Journal of Heat and Mass Transfer, 2015, 84: 1008–1018.
[24] Yang X., Wang W., Yang C., et al., Solidification of fluid saturated in open-cell metallic foams with graded morphologies. International Journal of Heat and Mass Transfer, 2016, 98: 60–69.
[25] Zhang Y., Ma G., Wang J., et al., Numerical and experimental study of phase-change temperature controller containing graded cellular material fabricated by additive manufacturing. Applied Thermal Engineering, 2019, 150: 1297–1305.
[26] Zhang Z., He X., Three-dimensional numerical study on solid-liquid phase change within open-celled aluminum foam with porosity gradient. Applied Thermal Engineering, 2017, 113: 298–308.
[27] Zhao C. Y., Lu W., Tian Y., Heat transfer enhancement for thermal energy storage using metal foams embedded within phase change materials (PCMs). Solar Energy, 2010, 84(8): 1402–1412.
[28] Chen J., Yang D., Jiang J., et al., Research progress of phase change materials (PCMs) embedded with metal foam (a review). Procedia Materials Science, 2014, 4: 389–394.
[29] Swaminathan Gopalan K., Eswaran V., Numerical investigation of thermal performance of PCM based heat sink using structured porous media as thermal conductivity enhancers. International Journal of Thermal Sciences, 2016, 104: 266–280.
[30] Hu X., Gong X., Experimental and numerical investigation on thermal performance enhancement of phase change material embedding porous metal structure with cubic cell. Applied Thermal Engineering, 2020, 175: 115337.
[31] Hu X., Gong X., Pore-scale numerical simulation of the thermal performance for phase change material embedded in metal foam with cubic periodic cell structure. Applied Thermal Engineering, 2019, 151: 231–239.
[32] Li W.Q., Qu Z.G., He Y.L., et al., Experimental and numerical studies on melting phase change heat transfer in open-cell metallic foams filled with paraffin. Applied Thermal Engineering, 2012, 37: 1–9.
[33] Zhu F., Zhang C., Gong X., Numerical analysis and comparison of the thermal performance enhancement methods for metal foam/phase change material composite. Applied Thermal Engineering, 2016, 109: 373–383.
[34] Luo Y., Li Q., Liu S., Topology optimization of shell–infill structures using an erosion-based interface identification method. Computer Methods in Applied Mechanics and Engineering, 2019, 355: 94–112.
[35] Luo Y., Chen W., Liu S., et al., A discrete-continuous parameterization (DCP) for concurrent optimization of structural topologies and continuous material orientations. Composite Structures, 2020, 236: 111900.
[36] Luo Y., Sigmund O., Li Q., et al., Additive manufacturing oriented topology optimization of structures with self-supported enclosed voids. Computer Methods in Applied Mechanics and Engineering, 2020, 372: 113385.
[37] Nagesha B.K., Dhinakaran V., Varsha Shree M., et al., Review on characterization and impacts of the lattice structure in additive manufacturing. Materials Today: Proceedings, 2020, 21: 916–919.
[38] Hu X., Gong X., Experimental study on the thermal response of PCM-based heat sink using structured porous material fabricated by 3D printing. Case Studies in Thermal Engineering, 2021, 24: 100844.
[39] Tian Y., Zhao C.Y., A numerical investigation of heat transfer in phase change materials (PCMs) embedded in porous metals. Energy, 2011, 36(9): 5539–5546.
[40] Krishnan S., Murthy J.Y., Garimella S.V., A two-temperature model for solid-liquid phase change in metal foams. Journal of Heat Transfer, 2005, 127(9): 995–1004.
[41] Boomsma K.P.D., On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. International Journal of Heat and Mass Transfer, 2001, 44(4)): 827–836.
[42] Bhattacharya A C.V.V., Mahajan R.L., Thermophysical properties of high porosity metal foams. International Journal of Heat and Mass Transfer, 2002, 45(5): 1017–1031.
[43] Žukauskas A., Heat transfer from tubes in crossflow. 1972, 8: 93–160.
[44] Calmidi V.V., Mahajan R.L., Forced convection in high porosity metal foams. Journal of Heat Transfer, 2000, 122(3): 557–565.
[45] Yang X.H., Kuang J.J., Lu T.J., et al., A simplistic analytical unit cell based model for the effective thermal conductivity of high porosity open-cell metal foams. Journal of Physics D: Applied Physics, 2013, 46(25): 255302.
[46] Yang X.H., Bai J.X., Yan H.B., et al., An analytical unit cell model for the effective thermal conductivity of high porosity open-cell metal foams. Transport in Porous Media, 2014, 102(3): 403–426.
[47] Yang X., Lu T.J., Kim T., An analytical model for permeability of isotropic porous media. Physics Letters A, 2014, 378(30–31): 2308–2311.