[1] Ministry of Energy, Informe Balance Nacional de Energía 2020, Santiago, Chile, 2022. https://energia.gob.cl/sites/default/files/documentos/2022_informe_anual_bne_2020.pdf.
[2] InData SpA, CDT, Usos de energía de los hogares de Chile 2018. Informe Final, Santiago, Chile, 2019. https://www.energia.gob.cl/sites/default/files/documentos/informe_final_caracterizacion_residencial_2018.pdf.
[3] Simon F., Ordoñez J., Girard A., Parrado C., Modelling energy use in residential buildings: How design decisions influence final energy performance in various Chilean climates. Indoor and Built Environment, 2019, 28: 533–551. https://doi.org/10.1177/1420326X18792661.
[4] Chan A., Energy and environmental performance of building facades integrated with phase change material in subtropical Hong Kong. Energy and Buildings, 2011, 43: 2947–2955. https://doi.org/10.1016/j.enbuild.2011.07.021.
[5] Nghana B., Tariku F., Phase change material’s (PCM) impacts on the energy performance and thermal comfort of buildings in a mild climate. Building and Environment, 2016, 99: 221–238. https://doi.org/10.1016/j.buildenv.2016.01.023.
[6] Cabeza L.F., Castellón C., Nogués M., Medrano M., Leppers R., Zubillaga O., Use of microencapsulated PCM in concrete walls for energy savings. Energy and Buildings, 2007, 39: 113–119. https://doi.org/10.1016/j.enbuild.2006.03.030.
[7] Baetens R., Jelle B.P., Gustavsen A., Phase change materials for building applications: A state-of-the-art review. Energy and Buildings, 2010, 42: 1361–1368. https://doi.org/10.1016/j.enbuild.2010.03.026.
[8] Barreneche C., Navarro M.E., Fernández A.I., Cabeza L.F., Improvement of the thermal inertia of building materials incorporating PCM. Evaluation in the macroscale. Applied Energy, 2013, 109: 428–432. https://doi.org/10.1016/j.apenergy.2012.12.055.
[9] Mandilaras I.D., Kontogeorgos D.A., Founti M.A., A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components. Renewable Energy, 2015, 76: 790–804. https://doi.org/10.1016/j.renene.2014.11.078.
[10] Kośny J., PCM-Enhanced building components: An application of phase change materials in building envelopes and internal structures. Cham: Springer International Publishing, 2015. https://doi.org/10.1007/978-3-319-14286-9.
[11] Chandel S.S., Agarwal T., Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renewable and Sustainable Energy Reviews, 2017, 67: 581–596. https://doi.org/10.1016/j.rser.2016.09.070.
[12] Athienitis K., Liu C., Hawes D., Banu D., Feldman D., Investigation of the thermal performance of a passive solar test-room with wall latent heat storage. Building and Environment, 1997, 32(5): 405–410. https://doi.org/10.1016/S0360-1323(97)00009-7.
[13] Evola G., Marletta L., Sicurella F., A methodology for investigating the effectiveness of PCM wallboards for summer thermal comfort in buildings. Building and Environment, 2013, 59: 517–527. https://doi.org/10.1016/j.buildenv.2012.09.021.
[14] Castell A., Martorell I., Medrano M., Pérez G., Cabeza L.F., Experimental study of using PCM in brick constructive solutions for passive cooling. Energy and Buildings, 2010, 42: 534–540. https://doi.org/10.1016/j.enbuild.2009.10.022.
[15] Kośny J., Fallahi A., Shukla N., Kossecka E., Ahbari R., Thermal load mitigation and passive cooling in residential attics containing PCM-enhanced insulations. Solar Energy, 2014, 108: 164–177. https://doi.org/10.1016/j.solener.2014.05.007.
[16] Xu T., Chen Q., Zhang Z., Gao X., Huang G., Investigation on the properties of a new type of concrete blocks incorporated with PEG/SiO2 composite phase change material. Building and Environment, 2016, 104: 172–177. https://doi.org/10.1016/j.buildenv.2016.05.003.
[17] Akeiber H., Nejat P., Majid M.Z.A., Wahid M.A., Jomehzadeh F., Famileh I.Z., Calautit J.K., Hughes B.R., Zaki S.A., A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews, 2016, 60: 1470–1497. https://doi.org/10.1016/j.rser.2016.03.036.
[18] Zhang Y., Zhou G., Lin K., Zhang Q., Di H., Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook. Building and Environment, 2007, 42: 2197–2209. https://doi.org/10.1016/j.buildenv.2006.07.023.
[19] Fatih Demirbas M., Thermal energy storage and phase change materials: An overview. Energy Sources, Part B: Economics, Planning, and Policy, 2006, 1: 85–95. https://doi.org/10.1080/009083190881481.
[20] Jin X., Zhang S., Xu X., Zhang X., Effects of PCM state on its phase change performance and the thermal performance of building walls. Building and Environment, 2014, 81: 334–339. https://doi.org/10.1016/j.buildenv.2014.07.012.
[21] Rodríguez-Ubinas E., Ruiz-Valero L., Vega S., Neila J., Applications of phase change material in highly energy-efficient houses. Building and Environment, 2012, 50: 49–62. https://doi.org/10.1016/j.enbuild.2012.03.018.
[22] Rodríguez-Ubiñas E., Ruíz-Valero L., Sánchez S.V., Neila González F.J., Latent heat thermal energy storage systems in lightweight construction: Review of PCM applications in solar decathlon houses. WIT Transactions on Ecology and the Environment, 2011, 150: 935–946. https://doi.org/10.2495/SDP110781.
[23] Yu X., Chang J., Huang R., Huang Y., Lu Y., Li Z., Wang L., Sensitivity analysis of thermophysical properties on PCM selection under steady and fluctuating heat sources: A comparative study. Applied Thermal Engineering, 2021, 186: 116527.
https://doi.org/10.1016/j.applthermaleng.2020.116527.
[24] Cui Y., Xie J., Liu J., Pan S., Review of phase change materials integrated in building walls for energy saving. Procedia Engineering, 2015, 121: 763–770. https://doi.org/10.1016/j.proeng.2015.09.027.
[25] Delgado J.M., Martinho J.C., Sá A.V., Guimarães A.S., Abrantes V., Thermal energy storage with phase change materials: A literature review of applications for buildings materials. Springer Cham, 2018. https://doi.org/10.1007/978-3-319-97499-6.
[26] Trunilina A.V., Baurova N.I., Polymer composites with biodegradative properties. Polymer Science, Series D, 2019, 12: 167–169. https://doi.org/10.1134/S1995421219020230.
[27] Palacios A., De Gracia A., Haurie L., Cabeza L.F., Fernández A.I., Barreneche C., Study of the thermal properties and the fire performance of flame retardant-organic PCM in bulk form. Materials, 2018, 11(1): 117. https://doi.org/10.3390/ma11010117.
[28] Nazir H., Batool M., Bolivar Osorio F.J., Isaza-Ruiz M., Xu X., Vignarooban K., Phelan P., Inamuddin, Kannan A.M., Recent developments in phase change materials for energy storage applications: A review. International Journal of Heat and Mass Transfer, 2019, 129: 491–523. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.126.
[29] Mahdi J.M., Lohrasbi S., Nsofor E.C., Hybrid heat transfer enhancement for latent-heat thermal energy storage systems: A review. International Journal of Heat and Mass Transfer, 2019, 137: 630–649. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.111.
[30] BCN, Información Territorial, Bibl. Del Congr. Nac. Chile. (2022). https://www.bcn.cl/siit/nuestropais/region2/region2 (accessed June 1, 2022).
[31] MMA, Base digital del clima, Minist. Del Medio Ambient. Gob. Chile. (2022). http://basedigitaldelclima.mma.gob.cl/study/one/zones/34 (accessed June 1, 2022).
[32] Weather Spark, El clima promedio en Antofagasta, Cedar Lake Ventur. Inc. (2022). https://es.weatherspark.com/y/26546/Clima-promedio-en-Antofagasta-Chile-durante-todo-el-año (accessed June 1, 2022).
[33] Molina A., Falvey M., Rondanelli R., A solar radiation database for Chile. Scientific Reports, 2017, 7: 1–11. https://doi.org/10.1038/s41598-017-13761-x.
[34] DesignBuilder, DesignBuilder v5.0.2.3, (2018). https://designbuilder.co.uk/.
[35] SCS Arquitecto Spa, Guía Buiclimática. Zonas climáticas del Chile Continental, (2018). https://scsarquitecto.cl/guia-bioclimatica-zonas-climaticas-chile-continental/ (accessed July 6, 2022).
[36] Sharma A., Tyagi V.V., Chen C.R., Buddhi D., Review on thermal energy storage with phase change materials and applications. Renewable and Sustainable Energy Reviews, 2009, 13(2): 318–345. https://doi.org/10.1016/j.rser.2007.10.005.
[37] Kuznik F., Virgone J., Experimental assessment of a phase change material for wall building use. Applied Energy, 2009, 86: 2038–2046. https://doi.org/10.1016/j.apenergy.2009.01.004.
[38] Boemi S.N., Irulegi O., Santamouris M., Energy performance of buildings: Energy efficiency and built environment in temperate climates. Cham: Springer International Publishing, 2016. https://doi.org/10.1007/978-3-319-20831-2.
[39] US Department of Energy, EnergyPlus energy simulation software (version 8.7.0), 2018. https://energyplus.net/.
[40] Tabares-Velasco P.C., Christensen C., Bianchi M., Verification and validation of EnergyPlus phase change material model for opaque wall assemblies. Building and Environment, 2012, 54: 186–196. https://doi.org/10.1016/j.buildenv.2012.02.019.
[41] Auzeby M., Wei S., Underwood C., Tindall J., Chen C., Ling H., Buswell R., Effectiveness of using phase change materials on reducing summer overheating issues in UK residential buildings with identification of influential factors. Energies, 2016, 9(8): 605. https://doi.org/10.3390/en9080605.
[42] Ozdenefe M., Dewsbury J., Dynamic thermal simulation of a PCM lined building with energy plus. Proceedings of 7th WSEAS International Conference on Energy and Environment, Kos Island, Greece, 2012, pp. 359–364.
[43] Neila González F.J., Arquitectura bioclimática en un entorno sostenible. Editorial Munilla-Lería, Madrid, 2004.
[44] Ramakrishnan S., Wang X., Sanjayan J., Wilson J., Thermal performance assessment of phase change material integrated cementitious composites in buildings: Experimental and numerical approach. Applied Energy, 2017, 207: 654–664. https://doi.org/10.1016/j.apenergy.2017.05.144.
[45] Salihi M., El Fiti M., Harmen Y., Chhiti Y., Chebak A., M’Hamdi Alaoui F.E., Achak M., Bentiss F., Jama C., Evaluation of global energy performance of building walls integrating PCM: Numerical study in semi-arid climate in Morocco. Case Studies in Construction Materials, 2022, 16: e00979. https://doi.org/10.1016/j.cscm.2022.e00979.
[46] Al-Absi Z.A., Mohd Hafizal M.I., Ismail M., Mardiana A., Ghazali A., Peak indoor air temperature reduction for buildings in hot-humid climate using phase change materials. Case Studies in Thermal Engineering, 2020, 22: 100762. https://doi.org/10.1016/j.csite.2020.100762.
[47] Bhamare D.K., Rathod M.K., Banerjee J., Numerical model for evaluating thermal performance of residential building roof integrated with inclined phase change material (PCM) layer. Journal of Building Engineering, 2020, 28: 101018. https://doi.org/10.1016/j.jobe.2019.101018.
[48] Mohseni E., Tang W., Parametric analysis and optimisation of energy efficiency of a lightweight building integrated with different configurations and types of PCM. Renewable Energy, 2021, 168: 865–877. https://doi.org/10.1016/j.renene.2020.12.112.
[49] Kabdrakhmanova M., Memon S.A., Saurbayeva A., Implementation of the panel data regression analysis in PCM integrated buildings located in a humid subtropical climate. Energy, 2021, 237: 121651. https://doi.org/10.1016/j.energy.2021.121651.
[50] Ascione F., Bianco N., De Masi R.F., de’ Rossi F., Vanoli G.P., Energy refurbishment of existing buildings through the use of phase change materials: Energy savings and indoor comfort in the cooling season. Applied Energy, 2014, 113: 990–1007. https://doi.org/10.1016/j.apenergy.2013.08.045.
[51] Sovetova M., Memon S.A., Kim J., Thermal performance and energy efficiency of building integrated with PCMs in hot desert climate region. Solar Energy, 2019, 189: 357–371. https://doi.org/10.1016/j.solener.2019.07.067.
[52] Mi X., Liu R., Cui H., Memon S.A., Xing F., Lo Y., Energy and economic analysis of building integrated with PCM in different cities of China. Applied Energy, 2016, 175: 324–336. https://doi.org/10.1016/j.apenergy.2016.05.032.
[53] Said M.A., Hassan H., Impact of energy storage of new hybrid system of phase change materials combined with air-conditioner on its heating and cooling performance. Journal of Energy Storage, 2021, 36: 102400. https://doi.org/10.1016/j.est.2021.102400.