[1] Obama B., The irreversible momentum of clean energy. Science, 2017, 355: 126–129.
[2] Turner J.M., The matter of a clean energy future. Science, 2022, 376: 1361.
[3] Zhang H.L., Baeyens J., Degreve J., et al., Concentrated solar power plants: review and design methodology. Renewable & Sustainable Energy Reviews, 2013, 22: 466–481.
[4] Opolot M., Zhao C.R., Liu M., et al., A review of high temperature (≥500°C) latent heat thermal energy storage. Renewable & Sustainable Energy Reviews, 2022, 160: 112293.
[5] Woods J., Mahvi A., Goyal A., et al., Rate capability and ragone plots for phase change thermal energy storage. Nature Energy, 2021, 6: 295–302.
[6] Aftab W., Usman A., Shi J., et al., Phase change material-integrated latent heat storage systems for sustainable energy solutions. Energy & Environmental Science, 2021, 14: 4268–4291.
[7] Xu H., Jiang L., Yuan A., et al., Thermally-stable, solid-solid phase change materials based on dynamic metal-ligand coordination for efficient thermal energy storage. Chemical Engineering Journal, 2021, 421: 129833.
[8] Sadeghi G., Energy storage on demand: thermal energy storage development, materials, design, and integration challenges. Energy Storage Materials, 2022, 46: 192–222.
[9] Crespo A., Barreneche C., Ibarra M., et al., Latent thermal energy storage for solar process heat applications at medium-high temperatures - a review. Solar Energy, 2019, 192: 3–34.
[10] Chen Y.Y., Zhao C.Y., Thermophysical properties of Ca(NO3)2-NaNO3-KNO3 mixtures for heat transfer and thermal storage. Solar Energy, 2017, 146: 172–179.
[11] Riahi S., Jovet Y., Saman W.Y., et al., Sensible and latent heat energy storage systems for concentrated solar power plants, exergy efficiency comparison. Solar Energy, 2019, 180: 104–115.
[12] Sharma A., Tyagi V.V., Chen C.R., et al., Review on thermal energy storage with phase change materials and applications. Renewable & Sustainable Energy Reviews, 2009, 13: 318–345.
[13] Pielichowska K., Pielichowski K., Phase change materials for thermal energy storage. Progress in Materials Science, 2014, 65: 67–123.
[14] Graham M., Smith J., Bilton M., et al., Highly stable energy capsules with nano-SiO2 pickering shell for thermal energy storage and release. ACS Nano, 2020, 14: 8894–8901.
[15] Ding W.J., Bauer T., Progress in research and development of molten chloride salt technology for next generation concentrated solar power plants. Engineering, 2021, 7: 334–347.
[16] Du L., Ding J., Tian H., et al., Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process. Applied Energy, 2017, 204: 1225–1230.
[17] Lai X., Yin H.Q., Li P., et al., Design optimization and thermal storage characteristics of NaNO3-NaCl-NaF molten salts with high latent heat and low cost for the thermal energy storage. Journal of Energy Storage, 2022, 52: 104805.
[18] Jiang Y.F., Sun Y.P., Liu M., et al., Eutectic Na2CO3-NaCl salt: a new phase change material for high temperature thermal storage. Solar Energy Materials and Solar Cells, 2016, 152: 155–160.
[19] Liu M., Gomez J.C., Turchi C.S., et al., Determination of thermo-physical properties and stability testing of high-temperature phase-change materials for CSP applications. Solar Energy Materials and Solar Cells, 2015, 139: 81–87.
[20] Ge Z., Huang Y., Ding Y., Eutectic composition-dependence of latent heat of binary carbonates (Na2CO3/Li2CO3). Solar Energy Materials and Solar Cells, 2018, 179: 202–206.
[21] Cardenas B., Leon N., High temperature latent heat thermal energy storage: phase change materials, design considerations and performance enhancement techniques. Renewable & Sustainable Energy Reviews, 2013, 27: 724–737.
[22] Delise T., Tizzoni A.C., Ferrara M., et al., Thermophysical, environmental, and compatibility properties of nitrate and nitrite containing molten salts for medium temperature CSP applications: a critical review. Journal of the European Ceramic Society, 2019, 39: 92–99.
[23] Mohan G., Venkataraman M., Gomez-Vidal J., Coventry J., Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage. Energy Conversion and Management, 2018, 167: 156–164.
[24] Kenisarin M.M., High-temperature phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews, 2010, 14: 955–970.
[25] Bale C.W., Belisle E., Chartrand P., et al., FactSage thermochemical software and databases—recent developments. Calphad-Computer Coupling of Phase Diagrams and Thermochemistry, 2009, 33: 295–311.
[26] Li Y., Chen X., Wu Y., et al., Experimental study on the effect of SiO2 nanoparticle dispersion on the thermophysical properties of binary nitrate molten salt. Solar Energy, 2019, 183: 776–781.
[27] Yu D.K., Xue Z.M., Mu T.C., Eutectics: formation, properties, and applications Chemical Society Reviews, 2021, 50: 8596–8638.
[28] Liu M., McGillicuddy R.D., Vuong H., et al., Network-forming liquids from metal-bis(acetamide) frameworks with low melting temperatures. Journal of the American Chemical Society, 2021, 143: 2801–2811.
[29] Malagueta D., Szklo A., Soria R., et al., Potential and impacts of concentrated solar power (CSP) integration in the brazilian electric power system. Renewable Energy, 2014, 68: 223–235.
[30] Mo S., Mo B., Wu F., et al., Preparation and thermal performance of ternary carbonates/silica microcomposites as phase change materials. Journal of Sol-Gel Science and Technology, 2021, 99: 220–229.
[31] Wang Y., Li X., Li N., et al., Thermal transport and storage performances of NaCl-KCl-NaF eutectic salt for high temperatures latent heat. Solar Energy Materials and Solar Cells, 2020, 218: 110756.
[32] Sang L.X., Cai M., Zhao Y.B., et al., Mixed metal carbonates/hydroxides for concentrating solar power analyzed with DSC and XRD. Solar Energy Materials and Solar Cells, 2015, 140: 167–173.
[33] Cairns E.J., MacDonald D.I., Sensitive thermal analysis establishing formation of the incongruently melting compound LiNaCO3. Nature, 1962, 194(4827): 441–442.
[34] Zhang Z.L., Yuan Y.P., Zhang N., et al., Thermal properties enforcement of carbonate ternary via lithium fluoride: a heat transfer fluid for concentrating solar power systems. Renewable Energy, 2017, 111: 523–531.
[35] Sulejmanovic D., Kurley J.M., Robb K., et al., Validating modern methods for impurity analysis in fluoride salts. Journal of Nuclear Materials, 2021, 553: 152972.
[36] Wei G., Wang G., Xu C., et al., Selection principles and thermophysical properties of high temperature phase change materials for thermal energy storage: a review. Renewable & Sustainable Energy Reviews. 2018, 81: 1771–1786.
[37] Tian H.Q., Wang W.L., Ding J., et al., Thermal performance and economic evaluation of NaCl-CaCl2 eutectic salt for high-temperature thermal energy storage. Energy, 2021, 227: 120412.