Performance Design of High-Temperature Chloride Salts as Thermal Energy Storage Material

  • ZHAO Le ,
  • WANG Jingyao ,
  • CUI Liu ,
  • LI Baorang ,
  • DU Xiaoze ,
  • WU Hongwei
Expand
  • 1. Key Laboratory of Power Station Energy Transfer Conversion and System (North China Electric Power University), Ministry of Education, Beijing 102206, China 
    2. School of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
    3. School of Physics, Engineering and Computer Science, University of Hertfordshire, Hatfield AL109AB, UK

Online published: 2024-03-07

Supported by

This work was financially supported by the National Natural Science Foundation of China (Grants No. 52130607, 52090062 and 52211530087) and the Double First-Class Key Program of Gansu Provincial Department of Education (Grant No. GCJ2022-38)

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

The chloride salts have great potential used as high-temperature thermal energy storage (TES) medium for the concentrated solar power system. In this study, LiCl, KCl and CaCl2 were selected as energy storage materials in order to further broaden the working temperature of ternary chloride salt and improve its energy storage density. The new high-temperature energy storage ternary chloride composed of LiCl, KCl, and CaCl2 was developed based on the phase diagram generated by FactSage. Three components of LiCl-KCl-CaCl2 with the mass ratio of 37.85%-53.38%-8.77%, 30.90%-13.82%-55.28% and 1.78%-18.61%-79.61% were developed, of which the corresponding melting temperature (Tm) 340.93, 433.57 and 626.85°C, respectively, was obtained either. Considering that Tm of the third group of salts was too high, only the first two groups of salts were tested. DSC test showed that the actual melting point was only 0.46% and 1.64% different from the melting point predicted by Factsage. The thermal properties of the two ternary chloride salts were also compared. The solid and liquid-specific heat of ternary salts was determined by DSC using sapphire as the standard reference. The vapor pressure and decomposition temperature of ternary chloride salts were investigated. The results showed that the vapor pressure of salt 1 was almost constant below 650°C by FactSage. Meanwhile, the TG results showed that the upper working temperature of salt 1 was 650°C under the air atmosphere. In addition, the ternary chloride salts after short-term cycling still exhibited excellent thermal properties, which revealed that these good thermal properties make them have broad application prospects in high-temperature thermal energy storage systems.

Cite this article

ZHAO Le , WANG Jingyao , CUI Liu , LI Baorang , DU Xiaoze , WU Hongwei . Performance Design of High-Temperature Chloride Salts as Thermal Energy Storage Material[J]. Journal of Thermal Science, 2024 , 33(2) : 479 -490 . DOI: 10.1007/s11630-024-1921-4

References

[1] Liu M., Omaraa E.S., Qi J., Haseli P., Ibrahim J., Sergeev D., Müller M., Bruno F., Majewski P., Review and characterization of high-temperature phase change material candidates between 500°C and 700°C. Renewable and Sustainable Energy Reviews, 2021, 150: 111528. 
[2] Kumar Y., Ringenberg J., Depuru S.S., Devabhaktuni V.K., Lee J.W., Nikolaidis E., Andersen B., Afjeh A., Wind energy: Trends and enabling technologies. Renewable and Sustainable Energy Reviews, 2016, 53: 209–224. 
[3] Ding W., Bonk A., Bauer T., Corrosion behavior of metallic alloys in molten chloride salts for thermal energy storage in concentrated solar power plants: A review. Frontiers of Chemical Science and Engineering, 2018, 12: 564–576. 
[4] Liu M., Steven N.H., Bell S., Belusko M., Jacob R., Will G., Saman W., Bruno F., Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies. Renewable and Sustainable Energy Reviews, 2016, 53: 1411–1432.
[5] Mehos M., Turchi C., Gomez V.J., Wagner M., Ma Z., Ho C., Kolb W., Andraka C., Kruizenga A., Concentrating Solar Power Gen3 Demonstration Roadmap, fourth ed., America, Colorado 2017.
[6] Lee J., Jo B., Nanoencapsulation of binary nitrate molten salts for thermal energy storage: Synthesis, thermal performance, and thermal reliability. Solar Energy Materials and Solar Cells, 2021, 23: 111284. 
[7] Delise T., Tizzoni A.C., Menale C., Telling M.T.F., Bubbico R., Crescenzi T., Corsaro N., Sau S., Licoccia S., Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid. Applied Energy, 2020, 265: 114676. 
[8] Fernández A.G., Ushak S., Galleguillos H., Pérez F.J., Thermal characterisation of an innovative quaternary molten nitrate mixture for energy storage in CSP plants. Solar Energy Materials and Solar Cells, 2015, 132: 172–177. 
[9] Fernández A.G., Ushak S., Galleguillos H., Pérez F.J., Development of new molten salts with LiNO3 and Ca(NO3)2 for energy storage in CSP plants. Applied Energy, 2014, 119: 131–140. 
[10] Zhao C.Y., Wu Z.G., Thermal property characterization of a low melting-temperature ternary nitrate salt mixture for thermal energy storage systems. Solar Energy Materials and Solar Cells, 2011, 95(12): 3341–3346. 
[11] Zhong Y., Yang H., Wang M., Thermodynamic evaluation and optimization of LiNO3-KNO3-NaNO3 ternary system. Calphad, 2020, 71(1): 102202. 
[12] Wang T., Mantha D., Reddy R.G., Novel low melting point quaternary eutectic system for solar thermal energy storage. Applied Energy, 2013, 102: 1422–1429.
[13] Wu Y.T., Ren N., Wang T., Ma C.F., Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant. Solar Energy, 2011, 85(9): 1957–1966. 
[14] Chen C., Tran T., Olivares R., Wright S., Sun S., Coupled experimental study and thermodynamic modeling of melting point and thermal stability of Li2CO3-Na2CO3-K2CO3 based salts. Journal of Solar Energy Engineering, 2014, 136(3): 031017.
[15] Sergeev D., Yazhenskikh E., Haseli P., Liu M., Ziegner M., Bruno F., Müller M., Experimental study of thermodynamic properties and phase equilibria in Na2CO3-K2CO3 system. Calphad, 2020, 71: 101992.
[16] Li X., Wu S., Wang Y., Xie L., Experimental investigation and thermodynamic modeling of an innovative molten salt for thermal energy storage (TES). Applied Energy, 2018, 212: 516–526. 
[17] Jiang Y., Sun Y., Jacob R.D., Bruno F., Li S., Novel Na2SO4-NaCl-ceramic composites as high temperature phase change materials for solar thermal power plants (Part I). Solar Energy Materials and Solar Cells, 2018, 178: 74–83.
[18] Jiang Y., Sun Y., Liu M., Bruno F., Li S., Eutectic Na2CO3-NaCl salt: A new phase change material for high temperature thermal storage. Solar Energy Materials and Solar Cells, 2016, 152: 155–160.
[19] Wei X., Song M., Wang W., Ding J., Yang J., Design and thermal properties of a novel ternary chloride eutectics for high-temperature solar energy storage. Applied Energy, 2015, 156: 306–310. 
[20] Wei X., Song M., Peng Q., Ding J., Yang J., Quaternary chloride eutectic mixture for thermal energy storage at high temperature. Energy Procedia, 2015, 75: 417–422. 
[21] Vignarooban K., Xu X., Arvay A., Hsu K., Kannan A.M., Heat transfer fluids for concentrating solar power systems – A review. Applied Energy, 2015, 146: 383–396. 
[22] Li X., Li N., Liu W., Tang Z., Wang J., Unrevealing the thermophysical properties and microstructural evolution of MgCl2-NaCl-KCl eutectic: FPMD simulations and experimental measurements. Solar Energy Materials and Solar Cells, 2020, 210: 110504. 
[23] Myers P.D., Goswami D.Y., Thermal energy storage using chloride salts and their eutectics. Applied thermal engineering, 2016, 109: 889–900.
[24] Wang X., Rincon J.D., Li P., Zhao Y., Vidal J., Thermophysical properties experimentally tested for NaCl-KCL-MgCl2 eutectic molten salt as a next-generation high-temperature heat transfer fluids in concentrated solar power systems. Journal of Solar Energy Engineering, 2020, 143(4): 1–13.
[25] Xu X., Dehghani G., Ning J., Li P., Basic properties of eutectic chloride salts NaCl-KCl-ZnCl2 and NaCl-KCl-MgCl2 as HTFs and thermal storage media measured using simultaneous DSC-TGA. Solar Energy, 2018, 162: 431–441.
[26] Li P., Molina E., Wang K., Xu X., Dehghani G., Kohli A., Hao Q., Kassaee M.H., Jeter S.M., Teja A.S., Thermal and transport properties of NaCl-KCl-ZnCl2 eutectic salts for new generation high-temperature heat-transfer fluids. Journal of Solar Energy Engineering, 2016, 138: 054501.
[27] Huang Q., Lu G., Wang J., Yu J., Thermal decomposition mechanisms of MgCl2·6H2O and MgCl2·H2O. Journal of Analytical and Applied Pyrolysis, 2011, 91: 159–164.
[28] Wang J.W., Zhang C.Z., Li Z.H., Zhou H.X., He J.X., Yu J.C., Corrosion behavior of nickel-based superalloys in thermal storage medium of molten eutectic NaCl-MgCl2 in atmosphere. Solar Energy Materials and Solar Cells, 2017, 164: 146–155.
[29] Vignarooban K., Xu X., Wang K., Molina E.E., Li P., Gervasio D., Kannan A.M., Vapor pressure and corrosivity of ternary metal-chloride molten-salt based heat transfer fluids for use in concentrating solar power systems. Applied Energy, 2015, 159: 206–213.
[30] Han D., Lougou G.B., Xu Y., Shuai Y., Huang X., Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage. Applied Energy, 2020, 264: 114674. 
[31] Wei X.L., Xie P., Wang W.L., Lu J.F., Ding J., Calculation of phase diagram and thermal stability of molten salt for ternary chloride systems containing calcium. CIESC Journal, 2021, 72(6): 3074–3083.
[32] Bale C.W., Chartrand P., Degterov S.A., Eriksson G., Hack K., Mahfoud B.R., Melançon J., Pelton A.D., Petersen S., FactSage thermochemical software and databases. Calphad: Computer Coupling of Phase Diagrams and Thermochemistry, 2002, 2: 26.
[33] Robelin C., Chartrand P., Thermodynamic evaluation and optimization of the (NaCl+KCl+MgCl2+CaCl2+ZnCl2) system. The Journal of Chemical Thermodynamics, 2011, 43: 377–391.
[34] Kenisarin M.M., High-temperature phase change materials for thermal energy storage. Renewable and Sustainable Energy Reviews, 2010, 14: 955–970.
[35] Mohan G., Venkataraman M., Gomez V.J., Coventry J., Assessment of a novel ternary eutectic chloride salt for next generation high-temperature sensible heat storage. Energy Conversion and Management, 2018, 167: 156–164.
[36] Hu Y., He Y., Zhang Z., Wen D., Effect of Al2O3 nanoparticle dispersion on the specific heat capacity of a eutectic binary nitrate salt for solar power applications. Energy Conversion and Management, 2017, 142: 366–373.
[37] Du L., Ding J., Tian H., Wang W., Wei X., Song M., Thermal properties and thermal stability of the ternary eutectic salt NaCl-CaCl2-MgCl2 used in high-temperature thermal energy storage process. Applied Energy, 2017, 204: 1225–1230.
[38] Bauer T., Pfleger N., Breidenbach N., Eck M., Laing D., Kaesche S., Material aspects of Solar Salt for sensible heat storage. Applied Energy, 2013, 111: 1114–1119.
[39] Boerema N., Morrison G., Taylor R., Rosengarten G., Liquid sodium versus Hitec as a heat transfer fluid in solar thermal central receiver systems. Solar Energy, 2012, 86: 2293–2305. 
[40] Xu X., Wang X., Li P., Li Y., Hao Q., Xiao B., Elsentriecy H., Gervasio D., Experimental test of properties of KCl-MgCl2 eutectic molten salt for heat transfer and thermal storage fluid in concentrated solar power systems. Journal of Solar Energy Engineering, 2018, 140: 051011. 
[41] Mohan G., Venkataraman M., Gomez V.J., Coventry J., Thermo-economic analysis of high-temperature sensible thermal storage with different ternary eutectic alkali and alkaline earth metal chlorides. Solar Energy, 2018, 176: 350–357.
[42] Tian H., Wang W., Ding J., Wei X., Thermal performance and economic evaluation of NaCl-CaCl2 eutectic salt for high-temperature thermal energy storage. Energy, 2021, 227: 120412.
[43] Tao Y.B., Lin C H., He Y.L., Preparation and thermal properties characterization of carbonate salt/carbon nanomaterial composite phase change material. Energy Conversion and Management, 2015, 97: 103–110. 
[44] Awad A., Navarro H., Ding Y., Wen D., Thermal-physical properties of nanoparticle-seeded nitrate molten salts. Renewable Energy, 2018, 120: 275–288. 
[45] Aljaerani H.A., Samykano M., Pandey A.K., Kadirgama K., Saidur R., Thermo-physical properties and corrosivity improvement of molten salts by use of nanoparticles for concentrated solar power applications: A critical review. Journal of Molecular Liquids, 2020, 314: 113807.
[46] Xiao X., Jia H., Pervaiz S., Wen D., Molten salt/metal foam/graphene nanoparticle phase change composites for thermal energy storage. ACS Applied Nano Materials, 2020, 3: 5240–5251. 
[47] Uriarte L.M., Dubessy J., Boulet P., Baonza V.G., Bihannic I., Robert P., Reference raman spectra of synthesized CaCl2 center dot nH2O solids (n=0, 2, 4, 6). Journal of Raman Spectposcopy, 2015, 46: 822–828. 
[48] Li Y., Yue G., Yu Y.M., Zhu Q.Z., Preparation and thermal characterization of LiNO3-NaNO3-KCl ternary mixture and LiNO3-NaNO3-KCl/EG composites. Energy, 2020, 196: 117067.
[49] Wu Y.T., Li Y., Lu Y.W., Wang H.F., Ma C.F., Novel low melting point binary nitrates for thermal energy storage applications. Solar Energy Materials and Solar Cells, 2017, 164: 114–121.
Outlines

/