[1] Roberts N.A., Walker D.G., A review of thermal rectification observations and models in solid materials. International Journal of Thermal Sciences, 2011, 50(5): 648–662.
[2] Wong M.Y., Tso C.Y., Ho T.C., Lee H.H., A review of state of the art thermal diodes and their potential applications. International Journal of Heat and Mass Transfer, 2021, 164: 20607. DOI: 10.1016/j.ijheatmasstransfer.2020.120607.
[3] Pugsley A., Zacharopoulos A., Deb Mondol J., Smyth M., Theoretical and experimental analysis of a horizontal planar liquid-vapour thermal diode (PLVTD). International Journal of Heat and Mass Transfer, 2019, 144: 118660. DOI: 10.1016/j.ijheatmasstransfer.2019.118660.
[4] Pugsley A., Zacharopoulos A., Deb Mondol J., Smyth M., Vertical planar liquid-vapour thermal diodes (PLVTD) and their application in building façade energy systems. Applied Thermal Engineering, 2020, 179: 115641. DOI: 10.1016/j.applthermaleng.2020.115641.
[5] Rao Z., Wang S., A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554–4571.
[6] Kim J., Oh J., Lee H., Review on battery thermal management system for electric vehicles. Applied Thermal Engineering, 2019, 149: 192–212. DOI: 10.1016/j.applthermaleng.2018.12.020.
[7] Pugsley A., Zacharopoulos A., Deb Mondol J., Smyth M., Theoretical and experimental analysis of a horizontal planar liquid-vapour thermal diode (PLVTD). International Journal of Heat and Mass Transfer, 2019, 144: 118660. DOI: 10.1016/j.ijheatmasstransfer.2019.118660.
[8] Yang L., Xu H., Zhang H., Chen Y., Liu M., Tian C., Numerical and experimental investigation on the performance of battery thermal management system based on micro heat pipe array. Journal of Thermal Science, 2022, 31(5): 1531–1541.
[9] Wong M.Y., Tso C.Y., Ho T.C., Lee H.H., A review of state of the art thermal diodes and their potential applications. International Journal of Heat and Mass Transfer, 2021, 164: 120607. DOI: 10.1016/j.ijheatmasstransfer.2020.120607.
[10] Wang Y., Vallabhaneni A., Hu J., Qiu B., Chen Y.P., Ruan X., Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Letters, 2014, 14(2): 592–596.
[11] Tian H., Xie D., Yang Y., Ren T.L., Zhang G., Wang Y.F., Zhou C.J., Peng P.G., Wang L.G., Liu L.T., A novel solid-state thermal rectifier based on reduced graphene oxide. Scientific Reports, 2012, 2: 523. DOI: 10.1038/srep00523.
[12] Giazotto F., Bergeret F.S., Thermal rectification of electrons in hybrid normal metal-superconductor nanojunctions. Applied Physics Letters, 2013, 103(24): 242602. DOI: 10.1063/1.4846375.
[13] Martínez-Pérez M.J., Giazotto F., Efficient phase-tunable josephson thermal rectifier. Applied Physics Letters, 2013, 102(18): 182602. DOI: 10.1063/1.4804550.
[14] Kasali S.O., Ordonez-Miranda J., Joulain K., Conductive thermal diode based on two phase-change materials. International Journal of Thermal Sciences, 2020, 153: 106393. DOI: 10.1016/j.ijthermalsci.2020.106393.
[15] Chen K., Chailapo P., Chun W., Kim S., Jin Lee K., The dynamic behavior of a bayonet-type thermal diode. Solar Energy, 1998, 64(4–6): 257–263.
[16] Jones G.F., Heat transfer in a liquid convective diode. Journal of Solar Energy Engineering, 1986, 108(3): 163–171.
[17] Chun W., Ko Y.J., Lee H.J., Han H., Kim J.T., Chen K., Effects of working fluids on the performance of a bi-directional thermodiode for solar energy utilization in buildings. Solar Energy, 2009, 83(3): 409–419.
[18] Audhkhasi R., Povinelli M.L., Design of far-field thermal rectifiers using gold-vanadium dioxide micro-gratings. Journal of Applied Physics, 2019, 126(6): 063106. DOI: 10.1063/1.5100624.
[19] Ghanekar A., Xiao G., Zheng Y., High contrast far-field radiative thermal diode. Science Report, 2017, 7: 6339. DOI: 10.1038/s41598-017-06804-w.
[20] Basu S., Francoeur M., Near-field radiative transfer based thermal rectification using doped silicon. Applied Physics Letters, 2011, 98(11): 113106. DOI: 10.1063/1.3567026.
[21] Ghanekar A., Ji J., Zheng Y., High-rectification near-field thermal diode using phase change periodic nanostructure. Applied Physics Letters, 2016, 109(12): 123106. DOI: 10.1063/1.4963317.
[22] Starr C., The copper oxide rectifier. Physics, 2004, 7(1): 15–19.
[23] Marucha C., Mucha J., Rafałowicz J., Heat flow rectification in inhomogeneous GaAs. Physica Status Solidi (a), 1975, 31(1): 269–273.
[24] Wang L., Li B., Phononics gets hot. Physics World, 2008, 21(3): 27–29.
[25] Wang Y., Vallabhaneni A., Hu J., Qiu B., Chen Y.P., Ruan X., Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Letters, 2014, 14(2): 592–596.
[26] Segal D., Single mode heat rectifier: controlling energy flow between electronic conductors. Physical Review Letters, 2008, 100(10): 105901. DOI: 10.1103/PhysRevLett.100.105901.
[27] Ben-Abdallah P., Biehs S.-A., Near-field thermal transistor. Physical Review Letters, 2014, 112(4): 044301. DOI: 10.1103/PhysRevLett.112.044301.
[28] Ben-Abdallah P., Biehs S.-A., Contactless heat flux control with photonic devices. AIP Advances, 2015, 5(5): 053502. DOI:10.1063/1.4915138.
[29] Basu S., Zhang Z.M., Fu C.J., Review of near-field thermal radiation and its application to energy conversion. International Journal of Energy Research, 2009, 33(13): 1203–1232.
[30] Park K., Zhang Z., Fundamentals and applications of near-field radiative energy transfer. Frontiers in Heat and Mass Transfer, 2013, 4(1): 013001. DOI: 10.5098/hmt.v4.1.3001.
[31] Shi K., Chen Z., Xu X., Evans J., He S., Optimized colossal near-field thermal radiation enabled by manipulating coupled plasmon polariton geometry. Advanced Materials, 2021, 33(52): 2106097. DOI: 10.1002/adma.202106097.
[32] Otey C.R., Lau W.T., Fan S., Thermal rectification through vacuum. Physical Review Letters, 2010, 104(15): 154301. DOI: 10.1103/PhysRevLett.104.154301.
[33] Fiorino A., Thompson D., Zhu L., Mittapally R., Biehs S.-A., Bezencenet O., El-Bondry N., Bansropun S., Ben-Abdallah P., Meyhofer E., Reddy P., A thermal diode based on nanoscale thermal radiation. ACS Nano, 2018, 12(6): 5774–5779.
[34] Gu W., Tang G.-H., Tao W.-Q., Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs. International Journal of Heat and Mass Transfer, 2015, 82: 429–434. DOI:10.1016/j.ijheatmasstransfer.2014.11.058
[35] Kołodziej A.S., Jaroszyński M., Performance of liquid convective diodes. Solar Energy, 1997, 61(5): 321–326.
[36] Varga S., Oliveira A.C., Afonso C.F., Characterisation of thermal diode panels for use in the cooling season in buildings. Energy and Buildings, 2002, 34(3): 227–235.
[37] Chen K., Design of a plane-type bidirectional thermal diode. Journal of Solar Energy Engineering, 1988, 110(4): 299–305.
[38] Chun W., Chen K., Test results of a bi-directional thermodiode system for solar energy utilization. Solar Energy, 2002, 73(4): 269–280.
[39] Boreyko J.B., Zhao Y., Chen C.-H., Planar jumping-drop thermal diodes. Applied Physics Letters, 2011, 99(23): 234105. DOI: 10.1063/1.3666818.
[40] Edalatpour M., Murphy K.R., Mukherjee R., Boreyko J.B., Bridging‐droplet thermal diodes. Advanced Functional Materials, 2020, 30(43): 2004451. DOI: 10.1002/adfm.202004451.
[41] Sun Z., Zhang Z., Duan C., The applicability of the wall implanted with heat pipes in winter of China. Energy and Buildings, 2015, 104: 36–46. DOI: 10.1016/j.enbuild.2015.06.082.
[42] Li Z., Zhang Z., Dynamic heat transfer characteristics of wall implanted with heat pipes in summer. Energy and Buildings, 2018, 170: 40–46. DOI: 10.1016/j.enbuild.2018.03.071.
[43] Martinez-Perez M.J., Fornieri A., Giazotto F., Rectification of electronic heat current by a hybrid thermal diode. Nature Nanotechnology, 2015, 10(4): 303–307.
[44] Li N., Ren J., Wang L., Zhang G., Hänggi P., Li B., Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Reviews of Modern Physics, 2012, 84(3): 1045–1066.
[45] Zhou W.J., Li Y., Chen Z.S., Deng L.Q., Gan Y.H., Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe. Applied Thermal Engineering, 2019, 162: 114215. DOI: 10.1016/j.applthermaleng.2019.114215.
[46] Skoog D.A., Holler F.J., Crouch S., Principles of instrumental analysis. Thomson Brooks. Cole, Canada, 2007.
[47] Boreyko J.B., Chen C.-H., Vapor chambers with jumping-drop liquid return from superhydrophobic condensers. International Journal of Heat and Mass Transfer, 2013, 61: 409–418. DOI: 10.1016/j.ijheatmasstransfer.2013.01.077.
[48] Hirayanagi T., Tsukamoto T., Esashi M., Tanaka S., Micro thermal diode with glass thermal insulation structure embedded in vapor chamber. Journal of Physics: Conference Series, 2013, 476: 012019. DOI: 10.1088/1742-6596/476/1/012019.
[49] Traipattanakul B., Tso C.Y., Chao C.Y.H., A phase-change thermal diode using electrostatic-induced coalescing-jumping droplets. International Journal of Heat and Mass Transfer, 2019, 135: 294–304. DOI: 10.1016/j.ijheatmasstransfer.2019.01.110.
[50] Wang J.X., Birbarah P., Docimo D., Yang T., Alleyne A.G., Miljkovic N., Nanostructured jumping-droplet thermal rectifier. Physical Review E, 2021, 103(2): 023110. DOI: 10.1103/PhysRevE.103.023110.
[51] Wong M.Y., Traipattanakul B., Tso C.Y., Chao C.Y.H., Qiu H., Experimental and theoretical study of a water-vapor chamber thermal diode. International Journal of Heat and Mass Transfer, 2019, 138: 173–183. DOI: 10.1016/j.ijheatmasstransfer.2019.04.046.