Effect of the Filling Liquid Ratio on the Thermal Performance of a Novel Thermal Diode with Wick

  • LI Zhiyong ,
  • MING Tingzhen ,
  • ZHANG Heyu ,
  • ZHAO Sitong ,
  • WANG Qinggang ,
  • CAI Cunjin ,
  • YIN Kui ,
  • FANG Yueping ,
  • WU Yongjia
Expand
  • 1. School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
    2. Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572004, China
    3. Deparment of Four Station, Logistics Academy, Xuzhou 221000, China
    4. School of Energy, Construction and Environment, Coventry University, Priory Street CV1 5FB, UK

Online published: 2024-03-07

Supported by

This research was supported by the National Natural Science Foundation of China (Grant No. 52208124), Hubei Provincial Key Research and Design Project (Grant No. 2020BAB129), and Scientific Research Foundation of Wuhan University of Technology (Grant No. 40120237 and 40120551).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

The application of thermal diodes, which allow heat to flow more readily in one direction than the other, is an important way to reduce energy consumption in buildings and enhance the battery heat dissipation of electric vehicles. Depending on various factors including the specific design, materials used, and operating conditions, the convective thermal diode can exhibit the best thermal rectification effect in intended applications compared to the other  thermal diodes. In this study, a novel convective thermal diode with a wick was proposed based on the phase change heat transfer mechanism. This design takes advantage of both capillary forces provided by the wick and gravity to achieve enhanced unidirectional heat transfer performance for the designed convective thermal diode. The effect of the filling liquid ratio on the thermal performance of the thermal diode was experimentally investigated, which was in good agreement with the theoretical analysis. The research findings showed that with an optimal liquid filling ratio of 140%, the thermal diode with a wick can achieve a better thermal rectification ratio when subjected to a lower heating power, and the maximum thermal rectification ratio of 21.76 was experimentally achieved when the heating power of the thermal diode was 40 W.

Cite this article

LI Zhiyong , MING Tingzhen , ZHANG Heyu , ZHAO Sitong , WANG Qinggang , CAI Cunjin , YIN Kui , FANG Yueping , WU Yongjia . Effect of the Filling Liquid Ratio on the Thermal Performance of a Novel Thermal Diode with Wick[J]. Journal of Thermal Science, 2024 , 33(2) : 396 -407 . DOI: 10.1007/s11630-024-1954-8

References

[1] Roberts N.A., Walker D.G., A review of thermal rectification observations and models in solid materials. International Journal of Thermal Sciences, 2011, 50(5): 648–662.
[2] Wong M.Y., Tso C.Y., Ho T.C., Lee H.H., A review of state of the art thermal diodes and their potential applications. International Journal of Heat and Mass Transfer, 2021, 164: 20607. DOI: 10.1016/j.ijheatmasstransfer.2020.120607.
[3] Pugsley A., Zacharopoulos A., Deb Mondol J., Smyth M., Theoretical and experimental analysis of a horizontal planar liquid-vapour thermal diode (PLVTD). International Journal of Heat and Mass Transfer, 2019, 144: 118660. DOI: 10.1016/j.ijheatmasstransfer.2019.118660.
[4] Pugsley A., Zacharopoulos A., Deb Mondol J., Smyth M., Vertical planar liquid-vapour thermal diodes (PLVTD) and their application in building façade energy systems. Applied Thermal Engineering, 2020, 179: 115641. DOI: 10.1016/j.applthermaleng.2020.115641.
[5] Rao Z., Wang S., A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 2011, 15(9): 4554–4571.
[6] Kim J., Oh J., Lee H., Review on battery thermal management system for electric vehicles. Applied Thermal Engineering, 2019, 149: 192–212. DOI: 10.1016/j.applthermaleng.2018.12.020.
[7] Pugsley A., Zacharopoulos A., Deb Mondol J., Smyth M., Theoretical and experimental analysis of a horizontal planar liquid-vapour thermal diode (PLVTD). International Journal of Heat and Mass Transfer, 2019, 144: 118660. DOI: 10.1016/j.ijheatmasstransfer.2019.118660.
[8] Yang L., Xu H., Zhang H., Chen Y., Liu M., Tian C., Numerical and experimental investigation on the performance of battery thermal management system based on micro heat pipe array. Journal of Thermal Science, 2022, 31(5): 1531–1541.
[9] Wong M.Y., Tso C.Y., Ho T.C., Lee H.H., A review of state of the art thermal diodes and their potential applications. International Journal of Heat and Mass Transfer, 2021, 164: 120607. DOI: 10.1016/j.ijheatmasstransfer.2020.120607.
[10] Wang Y., Vallabhaneni A., Hu J., Qiu B., Chen Y.P., Ruan X., Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Letters, 2014, 14(2): 592–596.
[11] Tian H., Xie D., Yang Y., Ren T.L., Zhang G., Wang Y.F., Zhou C.J., Peng P.G., Wang L.G., Liu L.T., A novel solid-state thermal rectifier based on reduced graphene oxide. Scientific Reports, 2012, 2: 523.  DOI: 10.1038/srep00523.
[12] Giazotto F., Bergeret F.S., Thermal rectification of electrons in hybrid normal metal-superconductor nanojunctions. Applied Physics Letters, 2013, 103(24): 242602. DOI: 10.1063/1.4846375.
[13] Martínez-Pérez M.J., Giazotto F., Efficient phase-tunable josephson thermal rectifier. Applied Physics Letters, 2013, 102(18): 182602. DOI: 10.1063/1.4804550.
[14] Kasali S.O., Ordonez-Miranda J., Joulain K., Conductive thermal diode based on two phase-change materials. International Journal of Thermal Sciences, 2020, 153: 106393. DOI: 10.1016/j.ijthermalsci.2020.106393.
[15] Chen K., Chailapo P., Chun W., Kim S., Jin Lee K., The dynamic behavior of a bayonet-type thermal diode. Solar Energy, 1998, 64(4–6): 257–263.
[16] Jones G.F., Heat transfer in a liquid convective diode. Journal of Solar Energy Engineering, 1986, 108(3): 163–171.
[17] Chun W., Ko Y.J., Lee H.J., Han H., Kim J.T., Chen K., Effects of working fluids on the performance of a bi-directional thermodiode for solar energy utilization in buildings. Solar Energy, 2009, 83(3): 409–419.
[18] Audhkhasi R., Povinelli M.L., Design of far-field thermal rectifiers using gold-vanadium dioxide micro-gratings. Journal of Applied Physics, 2019, 126(6): 063106. DOI: 10.1063/1.5100624.
[19] Ghanekar A., Xiao G., Zheng Y., High contrast far-field radiative thermal diode. Science Report, 2017, 7: 6339. DOI: 10.1038/s41598-017-06804-w.
[20] Basu S., Francoeur M., Near-field radiative transfer based thermal rectification using doped silicon. Applied Physics Letters, 2011, 98(11): 113106. DOI: 10.1063/1.3567026.
[21] Ghanekar A., Ji J., Zheng Y., High-rectification near-field thermal diode using phase change periodic nanostructure. Applied Physics Letters, 2016, 109(12): 123106. DOI: 10.1063/1.4963317.
[22] Starr C., The copper oxide rectifier. Physics, 2004, 7(1): 15–19.
[23] Marucha C., Mucha J., Rafałowicz J., Heat flow rectification in inhomogeneous GaAs. Physica Status Solidi (a), 1975, 31(1): 269–273.
[24] Wang L., Li B., Phononics gets hot. Physics World, 2008, 21(3): 27–29.
[25] Wang Y., Vallabhaneni A., Hu J., Qiu B., Chen Y.P., Ruan X., Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures. Nano Letters, 2014, 14(2): 592–596.
[26] Segal D., Single mode heat rectifier: controlling energy flow between electronic conductors. Physical Review Letters, 2008, 100(10): 105901. DOI: 10.1103/PhysRevLett.100.105901.
[27] Ben-Abdallah P., Biehs S.-A., Near-field thermal transistor. Physical Review Letters, 2014, 112(4): 044301. DOI: 10.1103/PhysRevLett.112.044301.
[28] Ben-Abdallah P., Biehs S.-A., Contactless heat flux control with photonic devices. AIP Advances, 2015, 5(5): 053502. DOI:10.1063/1.4915138.
[29] Basu S., Zhang Z.M., Fu C.J., Review of near-field thermal radiation and its application to energy conversion. International Journal of Energy Research, 2009, 33(13): 1203–1232.
[30] Park K., Zhang Z., Fundamentals and applications of near-field radiative energy transfer. Frontiers in Heat and Mass Transfer, 2013, 4(1): 013001. DOI: 10.5098/hmt.v4.1.3001.
[31] Shi K., Chen Z., Xu X., Evans J., He S., Optimized colossal near-field thermal radiation enabled by manipulating coupled plasmon polariton geometry. Advanced Materials, 2021, 33(52): 2106097. DOI: 10.1002/adma.202106097.
[32] Otey C.R., Lau W.T., Fan S., Thermal rectification through vacuum. Physical Review Letters, 2010, 104(15): 154301. DOI: 10.1103/PhysRevLett.104.154301.
[33] Fiorino A., Thompson D., Zhu L., Mittapally R., Biehs S.-A., Bezencenet O., El-Bondry N., Bansropun S., Ben-Abdallah P., Meyhofer E., Reddy P., A thermal diode based on nanoscale thermal radiation. ACS Nano, 2018, 12(6): 5774–5779.
[34] Gu W., Tang G.-H., Tao W.-Q., Thermal switch and thermal rectification enabled by near-field radiative heat transfer between three slabs. International Journal of Heat and Mass Transfer, 2015, 82: 429–434.  DOI:10.1016/j.ijheatmasstransfer.2014.11.058
[35] Kołodziej A.S., Jaroszyński M., Performance of liquid convective diodes. Solar Energy, 1997, 61(5): 321–326.
[36] Varga S., Oliveira A.C., Afonso C.F., Characterisation of thermal diode panels for use in the cooling season in buildings. Energy and Buildings, 2002, 34(3): 227–235.
[37] Chen K., Design of a plane-type bidirectional thermal diode. Journal of Solar Energy Engineering, 1988, 110(4): 299–305.
[38] Chun W., Chen K., Test results of a bi-directional thermodiode system for solar energy utilization. Solar Energy, 2002, 73(4): 269–280.
[39] Boreyko J.B., Zhao Y., Chen C.-H., Planar jumping-drop thermal diodes. Applied Physics Letters, 2011, 99(23): 234105. DOI: 10.1063/1.3666818.
[40] Edalatpour M., Murphy K.R., Mukherjee R., Boreyko J.B., Bridging‐droplet thermal diodes. Advanced Functional Materials, 2020, 30(43): 2004451. DOI: 10.1002/adfm.202004451.
[41] Sun Z., Zhang Z., Duan C., The applicability of the wall implanted with heat pipes in winter of China. Energy and Buildings, 2015, 104: 36–46. DOI: 10.1016/j.enbuild.2015.06.082.
[42] Li Z., Zhang Z., Dynamic heat transfer characteristics of wall implanted with heat pipes in summer. Energy and Buildings, 2018, 170: 40–46. DOI: 10.1016/j.enbuild.2018.03.071.
[43] Martinez-Perez M.J., Fornieri A., Giazotto F., Rectification of electronic heat current by a hybrid thermal diode. Nature Nanotechnology, 2015, 10(4): 303–307.
[44] Li N., Ren J., Wang L., Zhang G., Hänggi P., Li B., Colloquium: phononics: manipulating heat flow with electronic analogs and beyond. Reviews of Modern Physics, 2012, 84(3): 1045–1066.
[45] Zhou W.J., Li Y., Chen Z.S., Deng L.Q., Gan Y.H., Effect of the passage area ratio of liquid to vapor on an ultra-thin flattened heat pipe. Applied Thermal Engineering, 2019, 162: 114215. DOI: 10.1016/j.applthermaleng.2019.114215.
[46] Skoog D.A., Holler F.J., Crouch S., Principles of instrumental analysis. Thomson Brooks. Cole, Canada, 2007.
[47] Boreyko J.B., Chen C.-H., Vapor chambers with jumping-drop liquid return from superhydrophobic condensers. International Journal of Heat and Mass Transfer, 2013, 61: 409–418. DOI: 10.1016/j.ijheatmasstransfer.2013.01.077.
[48] Hirayanagi T., Tsukamoto T., Esashi M., Tanaka S., Micro thermal diode with glass thermal insulation structure embedded in vapor chamber. Journal of Physics: Conference Series, 2013, 476: 012019. DOI: 10.1088/1742-6596/476/1/012019.
[49] Traipattanakul B., Tso C.Y., Chao C.Y.H., A phase-change thermal diode using electrostatic-induced coalescing-jumping droplets. International Journal of Heat and Mass Transfer, 2019, 135: 294–304. DOI: 10.1016/j.ijheatmasstransfer.2019.01.110.
[50] Wang J.X., Birbarah P., Docimo D., Yang T., Alleyne A.G., Miljkovic N., Nanostructured jumping-droplet thermal rectifier. Physical Review E, 2021, 103(2): 023110. DOI: 10.1103/PhysRevE.103.023110.
[51] Wong M.Y., Traipattanakul B., Tso C.Y., Chao C.Y.H., Qiu H., Experimental and theoretical study of a water-vapor chamber thermal diode. International Journal of Heat and Mass Transfer, 2019, 138: 173–183.  DOI: 10.1016/j.ijheatmasstransfer.2019.04.046.
Outlines

/