[1] Gaitonde D.V., Progress in shock wave/boundary layer interactions. Progress in Aerospace Sciences, 2015, 72: 80–99.
[2] Clemens N.T., Narayanaswamy V., Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annual Review of Fluid Mechanics, 2014, 46: 469–492.
[3] Ferri A., Experimental results with airfoils tested in the high-speed tunnel at Guidonia. 1940, NACA-TM-946.
[4] Dolling D.S., Fifty years of shock-wave/boundary-layer interaction research: what next? AIAA Journal, 2001, 39(8): 1517–1531.
[5] Schreiber H.A., Starken H., Experimental cascade analysis of a transonic compressor rotor blade section. Journal of Engineering for Gas Turbines and Power- Transactions of the ASME, 1984, 106(2): 288–294.
[6] Hilgenfeld L., Fottner L., Experimental investigation of turbulence structures in a highly loaded transonic compressor cascade with shock/laminar boundary layer interactions. Engineering Turbulence Modelling and Experiments 5, 2002, pp. 779–788. DOI: 10.1016/B978-008044114-6/50075-2.
[7] Flaszynski P., Doerffer P., Szwaba R., Kaczynski P., Piotrowicz M., Shock wave boundary layer interaction on suction side of compressor profile in single passage test section. Journal of Thermal Science, 2015, 24(6): 510–515.
[8] Klinner J., Hergt A., Grund S., Willert C.E., High-speed PIV of shock boundary layer interactions in the transonic buffet flow of a compressor cascade. Experiments in Fluids, 2021, 62(3): 1–19.
[9] Hergt A., Klinner J., Grund S., Willert C., Steinert W., Beversdorff M., On the importance of transition control at transonic compressor blades. Journal of Turbomachinery, 2021, 143(3): 031007.
[10] Klinner J., Hergt A., Grund S., Willert C.E., Experimental investigation of shock-induced separation and flow control in a transonic compressor cascade. Experiments in Fluids, 2019, 60(6): 1–18.
[11] Szulc O., Doerffer P., Flaszynski P., Suresh T., Numerical modelling of shock wave-boundary layer interaction control by passive wall ventilation. Computers & Fluids, 2020, 200: 104435.
[12] Kim S.D., Kwon C.O., Song D.J., Comparison of turbulence models in shock-wave/boundary-layer interaction. KSME International Journal, 2004, 18(1): 153–166.
[13] Piotrowicz M., Flaszyński P., Numerical investigations of shock wave interaction with laminar boundary layer on compressor profile. Journal of Physics: Conference Series, 2016, 760(1): 012023. DOI: 10.1088/1742-6596/760/1/012023.
[14] Piotrowicz M., Flaszyński P., Doerffer P., Investigations of shock wave boundary layer interaction on suction side of compressor profile. Journal of Physics: Conference Series, 2014, 530(1): 012068. DOI: 10.1088/1742-6596/530/1/012068.
[15] Wang Y.G., Rao A.G., Eitelberg G., Study of shock wave control by suction & blowing on a highly-loaded transonic compressor cascade. International Journal of Turbo & Jet-Engines, 2013, 30(1): 79–90.
[16] Hu W.B., Hickel S., Van Oudheusden B.M., Low-frequency unsteadiness mechanisms in shock wave/turbulent boundary layer interactions over a backward-facing step. Journal of Fluid Mechanics, 2021, 915: A107.
[17] Dussauge J.P., Piponniau S., Shock/boundary-layer interactions: Possible sources of unsteadiness. Journal of Fluids and Structures, 2008, 24(8): 1166–1175.
[18] Touber E., Sandham N.D., Low-order stochastic modelling of low-frequency motions in reflected shock-wave/boundary-layer interactions. Journal of Fluid Mechanics, 2011, 671: 417–465.
[19] Ligrani P.M., Cox M., Goethals K., Spatial coherence of low-frequency unsteadiness associated with a normal shock wave. Aerospace Science and Technology, 2021, 112: 106637.
[20] Brusniak L., Dolling D.S., Physics of unsteady blunt-fin-induced shock wave/turbulent boundary layer interactions. Journal of Fluid Mechanics, 1994, 273: 375–409.
[21] Priebe S., Martín M.P., Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics, 2012, 699: 1–49.
[22] Dussauge J.P., Dupont P., Debiève J.F., Unsteadiness in shock wave boundary layer interactions with separation. Aerospace Science and Technology, 2006, 10(2): 85–91.
[23] Lee B.H.K., Self-sustained shock oscillations on airfoils at transonic speeds. Progress in Aerospace Sciences, 2001, 37(2): 147–196.
[24] Uchida K., Sugioka Y., Kasai M., Saito Y., Nonomura T., Asai K., Nakakita K., Nishizaki Y., Shibata Y., Sonoda S., Analysis of transonic buffet on ONERA-M4 model with unsteady pressure-sensitive paint. Experiments in Fluids, 2021, 62(6): 134.
[25] Running C.L., Juliano T.J., Global skewness and coherence for hypersonic shock-wave/boundary-layer interactions with pressure-sensitive paint. Aerospace, 2021, 8(5): 123.
[26] Watanabe T., Azuma T.,Uzawa S., Himeno T., Inoue C., Unsteady pressure measurement on oscillating blade in transonic flow using fast-response pressure-sensitive paint. Journal of Turbomachinery, 2018, 140(6): 061003.
[27] Gan J., Watanabe T., Himeno T., Effect of shock wave behavior on unsteady aerodynamic characteristics of oscillating transonic compressor cascade. Journal of Engineering for Gas Turbines and Power, 2022, 144(1): 011025.
[28] Liu T., Sullivan J.P., Asai K., Klein C., Egami Y., Pressure and temperature sensitive paints. Berlin, 2005.
[29] Wilcox D.C., Reassessment of the scale-determining equation for advanced turbulence models. AIAA Journal, 1988, 26(11): 1299–1310.
[30] Mirjalily S.A.A., Lambda shock behaviors of elliptic supersonic jets; a numerical analysis with modification of RANS turbulence model. Aerospace Science and Technology, 2021, 112: 106613.
[31] Babinsky H., Harvey J.K., Shock wave-boundary-layer interactions. Cambridge, New York, 2011.
[32] Delery J., Analysis of the separation due to shock-wave-turbulent boundary-layer interaction in transonic flow. Recherche Aerospatiale, 1978, (6): 305–320.
[33] Holden H.A., Babinsky H., Separated shock-boundary-layer interaction control using streamwise slots. Journal of Aircraft, 2005, 42(1): 166–171.
[34] Babinsky H., Ogawa H., SBLI control for wings and inlets. Shock Waves, 2008, 18(2): 89–96.
[35] Lam K., Li J.Y., Chan K.T., So R.M.C., Flow pattern and velocity field distribution of cross-flow around four cylinders in a square configuration at a low Reynolds number. Journal of Fluids and Structures, 2003, 17(5): 665–679.
[36] Blackerby W.T., Cahill J.F., High Reynolds number tests of a C-141A aircraft semispan model to investigate shock-induced separation. NASA, 1975.
[37] Gibb J., The cause and cure of periodic flows at transonic speeds. Cranfield University (United Kingdom), England, 1988.