Effect of Incoming Vortex on Secondary Flows in Turbine Cascades with Planar and Non-Axisymmetric Endwall

  • CAO Zhiyuan ,
  • WANG Chuxuan ,
  • SONG Zhigao ,
  • GAO Xi ,
  • ZHAO Wei ,
  • LIU Bo
Expand
  • 1. School of Power and Energy, Northwestern Polytechnical University, Xi’an 710072, China 
    2. National Key Laboratory of Science and Technology on Aerodynamic Design and Research, Northwestern Polytechnical University, Xi’an 710072, China 
    3. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100080, China 
    4. School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100080, China

Online published: 2024-01-16

Supported by

This work was supported by National Science and Technology Major Project (J2019-II-0011-0031), the foundation of National Key Laboratory of Science and Technology on Aerodynamic Design and Research (No. D5150230005), the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (No. PF2023091) and National Natural Science Foundation of China (No. 51806174). 

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract

Non-Axisymmetric Endwall Profiling (NAEP) is commonly utilized in turbines to eliminate secondary flows. Nevertheless, most of the NAEP methods consider a single-blade row environment without incorporating the effect of the stage environment. This paper aims to investigate the influence mechanism of the incoming vortex on the endwall secondary flow structures of NAEP in a highly loaded turbine cascade. To model the incoming vortex in a stage environment, this study considers a half-delta wing as the vortex generator at the upstream of the turbine cascade. The NAEP is then carried out for a highly loaded turbine cascade with an in-house numerical optimization design platform subject to no incoming vortex. Numerical simulation is also carried out under the influence of the incoming vortex for the turbine cascades with both planar and non-axisymmetric endwall. This paper furthers investigated the pitchwise effect of the incoming vortex on the near endwall secondary flow. The results indicate that the NAEP effectively improves the endwall secondary flow of the turbine cascade, where the total pressure loss coefficient and the secondary kinetic energy (SKE) are reduced by 7.3%, and 45.7%, respectively. It is further seen that with the incoming vortex, the NAEP achieves a considerable control effect on the endwall secondary flow of the turbine cascade. With incoming vortex, the NAEP can still achieve considerable control effect on the endwall secondary flow of the turbine cascade; the averaged reductions of loss coefficient and SKE are 7.8% and 14.2%, respectively. Under some pitchwise locations, incoming vortex can suppress the convection of cross-passage flow toward the suction corner greatly and reduce the loss coefficient of the baseline cascade. The incoming vortex at 4/7 pitch impinged right at the blade leading edge, leading to the generation of low-momentum fluid, which increased the size and the strength of the horseshoe vortex. Under all the pitchwise locations, NAEP can suppress the secondary vortices, e.g., the passage vortex and the counter vortex, considerably.

Cite this article

CAO Zhiyuan , WANG Chuxuan , SONG Zhigao , GAO Xi , ZHAO Wei , LIU Bo . Effect of Incoming Vortex on Secondary Flows in Turbine Cascades with Planar and Non-Axisymmetric Endwall[J]. Journal of Thermal Science, 2024 , 33(1) : 138 -157 . DOI: 10.1007/s11630-023-1823-x

References

[1] Denton J.D., Loss mechanisms in turbomachines. ASME Paper No: 93-GT-435, 1993. DOI: 10.1115/93-GT-435.
[2] Denton J., Pullan G.A., Numerical investigation into the sources of endwall loss in axial flow turbines. ASME Paper No. GT2012-69173, 2012. DOI: 10.1115/GT2012-69173.
[3] Hansen A.G., Herzig H.Z., Costello G.R., A visualization study of secondary flows in cascades. NACA Report NACA-TR-1163, 1953. https://ntrs.nasa.gov/citations/19930092191.
[4] Goldstein R.J., Karni J., The effect of a wall boundary layer on local mass transfer from a cylinder in crossflow. Journal of Heat Transfer, 1984, 106(2): 260–267. DOI: 10.1115/1.3246667.
[5] Langston L.S., Crossflows in a turbine cascade passage. Journal of Engineering for Gas Turbines & Power, 1980, 102(4): 866–874. DOI: 10.1115/1.3230352.
[6] Langston L.S., Nice M.L., Hooper R.M., Three-dimensional flow within a turbine cascade passage. Journal of Engineering for Gas Turbines & Power, 1977, 99(1): 21–28. DOI: 10.1115/1.3446247.
[7] Sieverding C.H., Van D.B.P., The use of coloured smoke to visualize secondary flows in a turbine-blade cascade. Journal of Fluid Mechanics, 1983, 134: 85–89. DOI: 10.1017/S0022112083003237.
[8] Wang H.P., Olson S.J., Goldstein R.J., Eckert E.R., Flow visualization in a linear turbine cascade of high performance turbine blades. Journal of Turbomachinery, 1997, 119(1): 1–8. DOI: 10.1115/1.2841006.
[9] Sun S.J., Chen S.W., Liu W., Wang, S.T., Effect of axisymmetric endwall contouring on the high-load low-reaction transonic compressor rotor with a substantial meridian contraction. Aerospace Science and Technology, 2018, 81: 78–87. DOI: 10.1016/j.ast.2018.08.001.
[10] Yan H., Liu Y.W., Li Q.S., Lu L.P., Turbulence characteristics in corner separation in a highly loaded linear compressor cascade. Aerospace Science and Technology, 2018, 75: 139–154. DOI: 10.1016/j.ast.2018.01.015.
[11] Kan X.X., Wu W.Y., Zhong J.J., Effects of vortex dynamics mechanism of blade-end treatment on the flow losses in a compressor cascade at critical condition. Aerospace Science and Technology, 2020, 102: 105857. DOI: 10.1016/j.ast.2020.105857.
[12] Simon T.W., Piggush J.D., Turbine endwall aerodynamics and heat transfer. Journal of Propulsion and Power, 2006, 22(2): 301–312. DOI: 10.2514/1.16344.
[13] Langston L.S., Secondary flows in axial turbines—a review. Annals of the New York Academy of Sciences, 2001, 934(1): 11–26. DOI: 10.1111/j.1749-6632.2001.tb05839.x.
[14] Kawai T., Shinoki S., Adachi T., Secondary flow control and loss reduction in a turbine cascade using endwall fences. JSME International Journal, 1989, 32(3): 375–387. DOI: 10.1299/jsmeb1988.32.3_375.
[15] Blair M.F., An experimental study of heat transfer and film cooling on large-scale turbine endwalls. Journal of Heat Transfer, 1974, 96(4): 524–529. DOI: 10.1115/74-GT-33.
[16] Deich M.E., Zaryankin A.E., Fillipov G.A., Zatsepin M.F., Method of increasing the efficiency of turbine stages and short blades. Teploenergetika, 1960, 2: 240–254.
[17] Rose M.G., Non-axisymmetric endwall profiling in the HP NGV’s of an axial flow gas turbine. ASME Paper No. 94-GT-249, 1994. DOI: 10.1115/94-GT-249.
[18] Kopper F.C., Milano R., Vanco M., Experimental investigation of endwall profiling in a turbine vane cascade. AIAA Journal, 1981, 19(8): 1033–1040. DOI: 10.2514/3.51032.
[19] Burd S.W., Simon T.W., Flow measurements in a nozzle guide vane passage with a low aspect ratio and endwall contouring. Journal of Turbomachinery, 2000, 122(4): 659–666. DOI: 10.1115/1.1312799.
[20] Brennan G., Harvey N.W., Rose M.G., Fomison N., Taylor M.D., Improving the efficiency of the trent 500 hp turbine using non-axisymmetric end walls: part I—turbine design. Journal of Turbomachinery, 2003, 125(3): 497–504. DOI: 10.1115/2001-GT-0444.
[21] Rose M.G., Harvey N.W., Seaman P., Newman D.A., McManus D., Improving the efficiency of the trent 500 hp turbine using non-axisymmetric end walls: part II—experimental validation. ASME Paper No. 2001-GT-0505, 2001. DOI: 10.1115/2001-GT-0505.
[22] Hartland J.C., Gregory-Smith D.G., Harvey N.W., Rose M.G., Nonaxisymmetric turbine end wall design: part II—experimental validation. Journal of Turbomachinery, 2000, 122(2): 286–293. DOI: 10.1115/1.555446.
[23] Harvey N.W., Rose M.G., Taylor M.D., Shahpar S., Hartland J., Gregory-Smith D.G., Nonaxisymmetric turbine end wall design: part I—three-dimensional linear design system. Journal of Turbomachinery, 2000, 122(2): 278–285. DOI: 10.1115/1.555445.
[24] Ingram G., Gregory-Smith D., Harvey N., Investigation of a novel secondary flow feature in a turbine cascade with end wall profiling. Journal of Turbomachinery, 2005, 127(1): 209–214. DOI: 10.1115/1.1812321.
[25] Knezevici D.C., Sjolander S.A., Praisner T.J., Allen-Bradley E., Grover E.A., Measurements of secondary losses in a turbine cascade with the implementation of non-axisymmetric endwall contouring. Journal of Turbomachinery, 2010, 132(1): 011013. DOI: 10.1115/1.3072520.
[26] Burd S.W., Simon T.W., Flow measurements in a nozzle guide vane passage with a low aspect ratio and endwall contouring. Journal of Turbomachinery, 2000, 122(4): 659–666. DOI: 10.1115/1.1312799.
[27] Taremi F., Sjolander S.A., Praisner T.J., Application of endwall contouring to transonic turbine cascades: experimental measurements at design conditions. Journal of Turbomachinery, 2013, 135(1): 011031. DOI: 10.1115/GT2011-46511.
[28] Chaluvadi V.S.P., Kalfas A.I., Banieghbal M.R., Hodson H.P., Denton J.D., Blade-row interaction in a high-pressure turbine. Journal of Propulsion and Power, 2001, 17(4): 892–901. DOI: 10.2514/2.5821.
[29] Chaluvadi V.S.P., Kalfas A.I., Hodson H.P., Ohyama H., Watanabe E., Blade row interaction in a high-pressure steam turbine. Journal of Turbomachinery, 2003, 125(1): 14–24. DOI: 10.1115/1.1518504.
[30] Sharma O., Butler T., Dring R., Joslyn H., Rotor-stator interaction in multi-stage axial-flow turbines. 24th Joint Propulsion Conference, 1988. DOI: 10.2514/6.1988-3013.
[31] Sharma O.P., Butler T.L., Joslyn H.D., Dring R.P., Three-dimensional unsteady flow in an axial flow turbine. Journal of Propulsion and Power, 1985, 1(1): 29–38. DOI: 10.2514/3.22755.
[32] Sharma O.P., Pickett G.F., Ni R.H., Assessment of unsteady flows in turbines. Journal of Turbomachinery, 1992, 114(1): 79–90. DOI: 10.1115/1.2928001.
[33] Dorney D.J., Davis R.L., Sharma O.P., Unsteady multistage analysis using a loosely coupled blade row approach. Journal of Propulsion and Power, 1996, 12(2): 274–282. DOI: 10.2514/3.24024.
[34] Chaluvadi V.S.P., Kalfas A.I., Hodson H.P., Vortex transport and blade interactions in high pressure turbines. Journal of Turbomachinery, 2004, 127(3): 395–405. DOI: 10.1115/1.1773849.
[35] Chaluvadi V.S.P., Kalfas A.I., Hodson H.P., Vortex generation and interaction in a steam turbine. Proceedings of the 5th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics. Local Conference Organising Committee, 2003. https://publications.eng.cam.ac.uk/327638.
[36] Wang Q., Moosania M., Zhou C., Effects of an incoming vortex on the film cooling jet. International Journal of Heat and Mass Transfer, 2022, 185: 122323. DOI: 10.1016/j.ijheatmasstransfer.2021.122323.
[37] Zhou K., Zhou C., Aerodynamic interaction between an incoming vortex and tip leakage flow in a turbine cascade. Journal of Turbomachinery, 2018, 140(11): 111004. DOI: 10.1115/1.4041514.
[38] Zhou K., Zhou C., Aerodynamic effects of an incoming vortex on turbines with different tip geometries. Journal of Turbomachinery, 2021, 143(8): 081009. DOI: 10.1115/1.4050440.
[39] Wei Z.J., Qiao W.Y., Chen P.P., Liu J., Formation and transport of secondary flows caused by vortex-blade interaction in a high pressure turbine. ASME Paper No. GT2015-42426, 2015. DOI: 10.1115/GT2015-42426.
[40] Mensch A., Thole K.A., Overall effectiveness and flowfield measurements for an endwall with nonaxisymmetric contouring. Journal of Turbomachinery, 2016, 138(3): 031007. DOI: 10.1115/1.4031962.
[41] Poehler T., Niewoehner J., Jeschke P., et al., Investigation of nonaxisymmetric endwall contouring and three-dimensional airfoil design in a 1.5-stage axial turbine—Part I: Design and novel numerical analysis method. Journal of Turbomachinery, 2015, 137(8): 081009. DOI: 10.1115/1.4029476.
[42] Moore H., Experiments in a turbine cascade for the validation of turbulence and transition models. Durham University, Durham, UK, 1995.
[43] Ingram G., Gregory-Smith D., Harvey N., Investigation of a novel secondary flow feature in a turbine cascade with end wall profiling. Journal of Turbomachinery, 2005, 127(1): 209–214. DOI: 10.1115/1.1812321.
[44] Atkins M.J., Secondary losses and end-wall profiling in a turbine cascade. IMechE Paper C255/87, 1987: 29–42.
[45] Hartland J.C., Gregory-Smith D.G., Rose M.G., Non-axisymmetric endwall profiling in a turbine rotor blade. ASME Paper No. 98-GT-525, 1998. DOI: 10.1115/98-GT-525.
[46] Yan J., Gregory-Smith D.G., Walker P.J., Secondary flow reduction in a nozzle guide vane cascade by non-axisymmetric end-wall profiling. ASME Paper No. 99-GT-339, 1999. DOI: 10.1115/99-GT-339.
[47] Cao Z.Y., Wang C.X., Zhao J.T., Hao X.Y., Song Z.G., Liu B., Control mechanism of secondary flow in a turbine cascade with non-axisymmetric endwall profiling under co-rotating incoming vortex. International Journal of Turbo & Jet-Engines, 2023. DOI: 10.1515/tjj-2022-0063.
[48] Weiss A.P., Fottner L., The influence of load distribution on secondary flow in straight turbine cascades. Journal of Turbomachinery, 1995, 117(1): 133–141. DOI: 10.1115/1.2835631.
[49] Sieverding C.H., Recent progress in the understanding of basic aspects of secondary flows in turbine blade passages. Journal of Turbomachinery, 1985, 107: 248–257. DOI: 10.1115/1.3239704.
Outlines

/