[1] Denton J.D., Loss mechanisms in turbomachines. ASME Paper No: 93-GT-435, 1993. DOI: 10.1115/93-GT-435.
[2] Denton J., Pullan G.A., Numerical investigation into the sources of endwall loss in axial flow turbines. ASME Paper No. GT2012-69173, 2012. DOI: 10.1115/GT2012-69173.
[3] Hansen A.G., Herzig H.Z., Costello G.R., A visualization study of secondary flows in cascades. NACA Report NACA-TR-1163, 1953. https://ntrs.nasa.gov/citations/19930092191.
[4] Goldstein R.J., Karni J., The effect of a wall boundary layer on local mass transfer from a cylinder in crossflow. Journal of Heat Transfer, 1984, 106(2): 260–267. DOI: 10.1115/1.3246667.
[5] Langston L.S., Crossflows in a turbine cascade passage. Journal of Engineering for Gas Turbines & Power, 1980, 102(4): 866–874. DOI: 10.1115/1.3230352.
[6] Langston L.S., Nice M.L., Hooper R.M., Three-dimensional flow within a turbine cascade passage. Journal of Engineering for Gas Turbines & Power, 1977, 99(1): 21–28. DOI: 10.1115/1.3446247.
[7] Sieverding C.H., Van D.B.P., The use of coloured smoke to visualize secondary flows in a turbine-blade cascade. Journal of Fluid Mechanics, 1983, 134: 85–89. DOI: 10.1017/S0022112083003237.
[8] Wang H.P., Olson S.J., Goldstein R.J., Eckert E.R., Flow visualization in a linear turbine cascade of high performance turbine blades. Journal of Turbomachinery, 1997, 119(1): 1–8. DOI: 10.1115/1.2841006.
[9] Sun S.J., Chen S.W., Liu W., Wang, S.T., Effect of axisymmetric endwall contouring on the high-load low-reaction transonic compressor rotor with a substantial meridian contraction. Aerospace Science and Technology, 2018, 81: 78–87. DOI: 10.1016/j.ast.2018.08.001.
[10] Yan H., Liu Y.W., Li Q.S., Lu L.P., Turbulence characteristics in corner separation in a highly loaded linear compressor cascade. Aerospace Science and Technology, 2018, 75: 139–154. DOI: 10.1016/j.ast.2018.01.015.
[11] Kan X.X., Wu W.Y., Zhong J.J., Effects of vortex dynamics mechanism of blade-end treatment on the flow losses in a compressor cascade at critical condition. Aerospace Science and Technology, 2020, 102: 105857. DOI: 10.1016/j.ast.2020.105857.
[12] Simon T.W., Piggush J.D., Turbine endwall aerodynamics and heat transfer. Journal of Propulsion and Power, 2006, 22(2): 301–312. DOI: 10.2514/1.16344.
[13] Langston L.S., Secondary flows in axial turbines—a review. Annals of the New York Academy of Sciences, 2001, 934(1): 11–26. DOI: 10.1111/j.1749-6632.2001.tb05839.x.
[14] Kawai T., Shinoki S., Adachi T., Secondary flow control and loss reduction in a turbine cascade using endwall fences. JSME International Journal, 1989, 32(3): 375–387. DOI: 10.1299/jsmeb1988.32.3_375.
[15] Blair M.F., An experimental study of heat transfer and film cooling on large-scale turbine endwalls. Journal of Heat Transfer, 1974, 96(4): 524–529. DOI: 10.1115/74-GT-33.
[16] Deich M.E., Zaryankin A.E., Fillipov G.A., Zatsepin M.F., Method of increasing the efficiency of turbine stages and short blades. Teploenergetika, 1960, 2: 240–254.
[17] Rose M.G., Non-axisymmetric endwall profiling in the HP NGV’s of an axial flow gas turbine. ASME Paper No. 94-GT-249, 1994. DOI: 10.1115/94-GT-249.
[18] Kopper F.C., Milano R., Vanco M., Experimental investigation of endwall profiling in a turbine vane cascade. AIAA Journal, 1981, 19(8): 1033–1040. DOI: 10.2514/3.51032.
[19] Burd S.W., Simon T.W., Flow measurements in a nozzle guide vane passage with a low aspect ratio and endwall contouring. Journal of Turbomachinery, 2000, 122(4): 659–666. DOI: 10.1115/1.1312799.
[20] Brennan G., Harvey N.W., Rose M.G., Fomison N., Taylor M.D., Improving the efficiency of the trent 500 hp turbine using non-axisymmetric end walls: part I—turbine design. Journal of Turbomachinery, 2003, 125(3): 497–504. DOI: 10.1115/2001-GT-0444.
[21] Rose M.G., Harvey N.W., Seaman P., Newman D.A., McManus D., Improving the efficiency of the trent 500 hp turbine using non-axisymmetric end walls: part II—experimental validation. ASME Paper No. 2001-GT-0505, 2001. DOI: 10.1115/2001-GT-0505.
[22] Hartland J.C., Gregory-Smith D.G., Harvey N.W., Rose M.G., Nonaxisymmetric turbine end wall design: part II—experimental validation. Journal of Turbomachinery, 2000, 122(2): 286–293. DOI: 10.1115/1.555446.
[23] Harvey N.W., Rose M.G., Taylor M.D., Shahpar S., Hartland J., Gregory-Smith D.G., Nonaxisymmetric turbine end wall design: part I—three-dimensional linear design system. Journal of Turbomachinery, 2000, 122(2): 278–285. DOI: 10.1115/1.555445.
[24] Ingram G., Gregory-Smith D., Harvey N., Investigation of a novel secondary flow feature in a turbine cascade with end wall profiling. Journal of Turbomachinery, 2005, 127(1): 209–214. DOI: 10.1115/1.1812321.
[25] Knezevici D.C., Sjolander S.A., Praisner T.J., Allen-Bradley E., Grover E.A., Measurements of secondary losses in a turbine cascade with the implementation of non-axisymmetric endwall contouring. Journal of Turbomachinery, 2010, 132(1): 011013. DOI: 10.1115/1.3072520.
[26] Burd S.W., Simon T.W., Flow measurements in a nozzle guide vane passage with a low aspect ratio and endwall contouring. Journal of Turbomachinery, 2000, 122(4): 659–666. DOI: 10.1115/1.1312799.
[27] Taremi F., Sjolander S.A., Praisner T.J., Application of endwall contouring to transonic turbine cascades: experimental measurements at design conditions. Journal of Turbomachinery, 2013, 135(1): 011031. DOI: 10.1115/GT2011-46511.
[28] Chaluvadi V.S.P., Kalfas A.I., Banieghbal M.R., Hodson H.P., Denton J.D., Blade-row interaction in a high-pressure turbine. Journal of Propulsion and Power, 2001, 17(4): 892–901. DOI: 10.2514/2.5821.
[29] Chaluvadi V.S.P., Kalfas A.I., Hodson H.P., Ohyama H., Watanabe E., Blade row interaction in a high-pressure steam turbine. Journal of Turbomachinery, 2003, 125(1): 14–24. DOI: 10.1115/1.1518504.
[30] Sharma O., Butler T., Dring R., Joslyn H., Rotor-stator interaction in multi-stage axial-flow turbines. 24th Joint Propulsion Conference, 1988. DOI: 10.2514/6.1988-3013.
[31] Sharma O.P., Butler T.L., Joslyn H.D., Dring R.P., Three-dimensional unsteady flow in an axial flow turbine. Journal of Propulsion and Power, 1985, 1(1): 29–38. DOI: 10.2514/3.22755.
[32] Sharma O.P., Pickett G.F., Ni R.H., Assessment of unsteady flows in turbines. Journal of Turbomachinery, 1992, 114(1): 79–90. DOI: 10.1115/1.2928001.
[33] Dorney D.J., Davis R.L., Sharma O.P., Unsteady multistage analysis using a loosely coupled blade row approach. Journal of Propulsion and Power, 1996, 12(2): 274–282. DOI: 10.2514/3.24024.
[34] Chaluvadi V.S.P., Kalfas A.I., Hodson H.P., Vortex transport and blade interactions in high pressure turbines. Journal of Turbomachinery, 2004, 127(3): 395–405. DOI: 10.1115/1.1773849.
[35] Chaluvadi V.S.P., Kalfas A.I., Hodson H.P., Vortex generation and interaction in a steam turbine. Proceedings of the 5th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics. Local Conference Organising Committee, 2003. https://publications.eng.cam.ac.uk/327638.
[36] Wang Q., Moosania M., Zhou C., Effects of an incoming vortex on the film cooling jet. International Journal of Heat and Mass Transfer, 2022, 185: 122323. DOI: 10.1016/j.ijheatmasstransfer.2021.122323.
[37] Zhou K., Zhou C., Aerodynamic interaction between an incoming vortex and tip leakage flow in a turbine cascade. Journal of Turbomachinery, 2018, 140(11): 111004. DOI: 10.1115/1.4041514.
[38] Zhou K., Zhou C., Aerodynamic effects of an incoming vortex on turbines with different tip geometries. Journal of Turbomachinery, 2021, 143(8): 081009. DOI: 10.1115/1.4050440.
[39] Wei Z.J., Qiao W.Y., Chen P.P., Liu J., Formation and transport of secondary flows caused by vortex-blade interaction in a high pressure turbine. ASME Paper No. GT2015-42426, 2015. DOI: 10.1115/GT2015-42426.
[40] Mensch A., Thole K.A., Overall effectiveness and flowfield measurements for an endwall with nonaxisymmetric contouring. Journal of Turbomachinery, 2016, 138(3): 031007. DOI: 10.1115/1.4031962.
[41] Poehler T., Niewoehner J., Jeschke P., et al., Investigation of nonaxisymmetric endwall contouring and three-dimensional airfoil design in a 1.5-stage axial turbine—Part I: Design and novel numerical analysis method. Journal of Turbomachinery, 2015, 137(8): 081009. DOI: 10.1115/1.4029476.
[42] Moore H., Experiments in a turbine cascade for the validation of turbulence and transition models. Durham University, Durham, UK, 1995.
[43] Ingram G., Gregory-Smith D., Harvey N., Investigation of a novel secondary flow feature in a turbine cascade with end wall profiling. Journal of Turbomachinery, 2005, 127(1): 209–214. DOI: 10.1115/1.1812321.
[44] Atkins M.J., Secondary losses and end-wall profiling in a turbine cascade. IMechE Paper C255/87, 1987: 29–42.
[45] Hartland J.C., Gregory-Smith D.G., Rose M.G., Non-axisymmetric endwall profiling in a turbine rotor blade. ASME Paper No. 98-GT-525, 1998. DOI: 10.1115/98-GT-525.
[46] Yan J., Gregory-Smith D.G., Walker P.J., Secondary flow reduction in a nozzle guide vane cascade by non-axisymmetric end-wall profiling. ASME Paper No. 99-GT-339, 1999. DOI: 10.1115/99-GT-339.
[47] Cao Z.Y., Wang C.X., Zhao J.T., Hao X.Y., Song Z.G., Liu B., Control mechanism of secondary flow in a turbine cascade with non-axisymmetric endwall profiling under co-rotating incoming vortex. International Journal of Turbo & Jet-Engines, 2023. DOI: 10.1515/tjj-2022-0063.
[48] Weiss A.P., Fottner L., The influence of load distribution on secondary flow in straight turbine cascades. Journal of Turbomachinery, 1995, 117(1): 133–141. DOI: 10.1115/1.2835631.
[49] Sieverding C.H., Recent progress in the understanding of basic aspects of secondary flows in turbine blade passages. Journal of Turbomachinery, 1985, 107: 248–257. DOI: 10.1115/1.3239704.