[1]
Razmjoo A., Gakenia Kaigutha L., Vaziri Rad M.A., Marzband M., Davarpanah A., Denai M., A technical analysis investigating energy sustainability utilizing reliable renewable energy sources to reduce CO
2 emissions in a high potential area. Renewable Energy, 2021, 164: 46–57.
[2]
Lefebvre D., Tezel F.H., A review of energy storage technologies with a focus on adsorption thermal energy storage processes for heating applications. Renewable and Sustainable Energy Reviews, 2017, 67: 116–125.
[3]
Chavan S., Rudrapati R., Manickam S., A comprehensive review on current advances of thermal energy storage and its applications. Alexandria Engineering Journal, 2022, 61: 5455–5463.
[4]
Kousksou T., Bruel P., Jamil A., Rhafiki T.E., Zeraouli Y., Energy storage: Applications and challenges. Solar Energy Materials and Solar Cells, 2014, 120: 59–80.
[5]
Wu S.F., Yan T., Kuai Z.H., Pan W.G., Thermal conductivity enhancement on phase change materials for thermal energy storage: A review. Energy Storage Materials, 2020, 25: 251–295.
[6]
Gao H.Y., Wang J.J., Chen X., Wang G., Huang X.B., Li A., Dong W.J., Nanoconfinement effects on thermal properties of nanoporous shape-stabilized composite PCMs: A review. Nano Energy, 2018, 53: 769–797.
[7]
Su W., Darkwa J., Kokogiannakis G., Review of solid-liquid phase change materials and their encapsulation technologies. Renewable and Sustainable Energy Reviews, 2015, 48: 373–391.
[8]
Sharma R.K., Ganesan P., Tyagi V.V., Metselaar H.S.C., Sandaran S.C., Developments in organic solid-liquid phase change materials and their applications in thermal energy storage. Energy Conversion and Management, 2015, 95: 193–228.
[9]
Šesták J., Berggren G., Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures. Thermochimica Acta, 1971, 3: 1–12.
[10]
Fornes T.D., Paul D.R., Crystallization behavior of nylon 6 nanocomposites. Polymer, 2003, 44: 3945–3961.
[11]
Uhlmann D.R., A kinetic treatment of glass formation. Journal of Non-Crystalline Solids, 1972, 7: 337–348.
[12]
Avrami M., Granulation, phase change, and microstructure kinetics of phase change. III. Journal of Chemical Physics, 1941, 9: 177–184.
[13]
Avrami M., Kinetics of phase change. I General theory. Journal of Chemical Physics, 1939, 7: 1103–1112.
[14]
Avrami M., Kinetics of phase change. II Transformation- time relations for random distribution of nuclei. Journal of Chemical Physics, 1940, 8: 212–224.
[15]
Ozawa T., Kinetics of non-isothermal crystallization. Polymer, 1971, 12: 150–158.
[16]
Jeziorny A., Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate) determined by DSC. Polymer, 1978, 19: 1142–1144.
[17]
Liu T.X., Mo Z.S., Wang S.E., Zhang H.F., Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polymer Engineering and Science, 1997, 37: 568–575.
[18]
Cebe P., Hong S.D., Crystallization behaviour of poly(ether-ether-ketone). Polymer, 1986, 27: 1183–1192.
[19]
Wang Y.M., Shen C.Y., Li H.M., Li Q., Chen J.B., Nonisothermal melt crystallization kinetics of poly (ethylene terephthalate)/clay nanocomposites. Journal of Applied Polymer Science, 2004, 91: 308–314.
[20]
Augis J.A., Bennett J.E., Calculation of the Avrami parameters for heterogeneous solid state reactions using a modification of the Kissinger method. Journal of Thermal Analysis, 1978, 13: 283–292.
[21]
Iqbal N., Dijk N.H.V., Hansen T., Katgerman L., Kearley G.J., The role of solute titanium and TiB2 particles in the liquid-solid phase transformation of aluminum alloys. Materials Science and Engineering, 2004, 386: 20–26.
[22]
Nakano K., Masuda Y., Daiguji H., Crystallization and melting behavior of Erythritol in and around two- dimensional hexagonal mesoporous silica. Journal of Physical Chemistry C, 2015, 119: 4769–4777.
[23]
Peng Q., Ding J., Wei X.L., Yang J.P., Yang X.X., The preparation and properties of multi-component molten salts. Applied Energy, 2010, 87: 2812–2817.
[24]
Wu Y.T., Ren N., Wang T., Ma C.F., Experimental study on optimized composition of mixed carbonate salt for sensible heat storage in solar thermal power plant. Solar Energy, 2011, 85: 1957–1966.
[25]
Bösenberg U., Buchmann M., Rettenmayr M., Initial transients during solid/liquid phase transformations in a temperature gradient. Journal of Crystal Growth, 2007, 304: 281–286.
[26]
Ji H.X., Sellan D.P., Pettes M.T., Kong X.H., Ji J.Y., Shi L., Ruoff R.S., Enhanced thermal conductivity of phase change materials with ultrathin-graphite foams for thermal energy storage. Energy and Environmental Science, 2014, 7: 1185–1192.
[27]
Jiang Z., Leng G.H., Ye F., Ge Z.W., Liu C.P., Wang L., Huang Y., Ding Y.L., Form-stable LiNO
3-NaNO
3-KNO
3-Ca(NO
3)(2)/calcium silicate composite phase change material (PCM) for mid-low temperature thermal energy storage. Energy Conversion and Management, 2015, 106: 165–172.
[28]
Karthik M., Faik A., Blanco-Rodríguez P., Rodríguez-Aseguinolaza J., D’Aguanno B., Preparation of erythritol-graphite foam phase change composite with enhanced thermal conductivity for thermal energy storage applications. Carbon, 2015, 94: 266–276.
[29]
Liu D.M., Kang J., Xiang M., Cao Y., Effect of annealing on phase structure and mechanical behaviors of polypropylene hard elastic films. Journal of Polymer Research, 2013, 20: 126.
[30]
Zhang P., Xiao X., Ma Z.W., A review of the composite phase change materials: Fabrication, characterization, mathematical modeling and application to performance enhancement. Applied Energy, 2016, 165: 472–510.
[31]
Yuan M.D., Ren Y.X., Xu C., Ye F., Du X.Z., Characterization and stability study of a form-stable erythritol/expanded graphite composite phase change material for thermal energy storage. Renewable Energy, 2019, 136: 211–222.
[32]
Wang W., Wang C.Y., Li W., Fan X.X., Wu Z.H., Zheng J., Li X.G., Novel phase change behavior of n-eicosane in nanoporous silica: emulsion template preparation and structure characterization using small angle X-ray scattering. Physical Chemistry Chemical Physics, 2013, 15: 14390–14395.
[33]
Srikanth S., Suresh S., Sarath R.A., Low melt alloy enhanced solid-liquid phase change organic sugar alcohol for solar thermal energy storage. Journal of Molecular Liquids, 2018, 266: 29–42.
[34]
Lu K., Nanocrystalline metals crystallized from amorphous solids: nanocrystallization, structure, and properties. Materials Science and Engineering, 1996, 16: 161–221.
[35]
Berkeley R.F., Kashefi M., Debelouchina G.T., Real-time observation of structure and dynamics during the liquid-to-solid transition of FUS LC. Biophysical Journal, 2021, 120: 1276–1287.
[36]
Bonk A., Braun M., Sötz V.A., Bauer T., Solar salt – Pushing an old material for energy storage to a new limit. Applied Energy, 2020, 262: 114535.
[37]
Saranprabhu M.K., Rajan K.S., Magnesium oxide nanoparticles dispersed solar salt with improved solid phase thermal conductivity and specific heat for latent heat thermal energy storage. Renewable Energy, 2019, 141: 451–459.
[38]
Han D.M., Lougou B.G., Xu Y.T., Shuai Y., Huang X., Thermal properties characterization of chloride salts/nanoparticles composite phase change material for high-temperature thermal energy storage. Applied Energy, 2020, 264: 114674.
[39]
Sun X.Q., Zhang Q., Medina M.A., Lee K.O., Experimental observations on the heat transfer enhancement caused by natural convection during melting of solid-liquid phase change materials (PCMs). Applied Energy, 2016, 162: 1453–1461.
[40]
Jiang D.L., Liao Z.R., Li P.D., Yu G.L., Xu C., The evolution of the mushy zone during the melting process of a binary nitrate salt. International Journal of Heat and Mass Transfer, 2019, 142: 118456.
[41]
Zhang S., Jin Y., Yan Y., Depression of melting point and latent heat of molten salts as inorganic phase change material: Size effect and mechanism. Journal of Molecular Liquids, 2021, 346: 117058.
[42]
Hong S., Tang Y., Wang S., Investigation on critical heat flux of flow boiling in parallel microchannels with large aspect ratio: Experimental and theoretical analysis. International Journal of Heat and Mass Transfer, 2018, 127: 55–66.
[43]
Hosseinizadeh S.F., Rabienataj Darzi A.A., Tan F.L., Khodadadi J.M., Unconstrained melting inside a sphere. International Journal of Thermal Sciences, 2013, 63: 55–64.
[44]
Koropov A.V., Kukushkin S.A., Grigor’ev D.A., Inclusion of a nonzero volume fraction of the new phase in the kinetics of crystallization of melts. Technical Physics, 1999, 44: 786–791.
[45]
Kasibhatla R.R., Brüggemann D., Coupled conjugate heat transfer model for melting of PCM in cylindrical capsules. Applied Thermal Engineering, 2021, 184: 116301.