[1] Chai L., Tassou S.A., A review of printed circuit heat exchangers for helium and supercritical CO2 Brayton cycles. Thermal Science and Engineering Progress, 2020, 18: 100543.
[2] Aakre S.R., Anderson M.H., Molten salt to supercritical CO2 diffusion-bonded heat exchanger testing to support component certification for advanced nuclear power systems. 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2019, 2019, pp. 4876–4887.
[3] Cheng K., Huai X., Guo J., Sun X., Experimental study of thermal-hydraulic performance of a printed circuit heat exchanger. 18th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, NURETH 2019, 2019, pp. 688–700.
[4] Sabharwall P., Clark D., Glazoff M., Zheng G., Sridharan K., Anderson M., Advanced heat exchanger development for molten salts. Nuclear Engineering and Design, 2014, 280: 42–56.
[5] Cachon L., Vitillo F., Garnier C., Jeanningros X., Rigal E., Le Bourdais F., Madeleine S., Gastaldi O., Laffont G., Status of the Sodium Gas Heat Exchanger (SGHE) development for the Nitrogen Power Conversion System planned for the ASTRID SFR prototype. Proceedings of ICAPP 2015, May 2015, Nice, France, 2015, Paper 15362.
[6] Plancq D., Cachon L., Woaye H.A., Verpoest T., Progress in the ASTRID Sodium Gas Heat Exchanger development. International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development (FR17), Yekaterinburg, Russian Federation, 2017.
[7] Plancq D., Cachon L., Remy A., Quenaut J., Fasel Y., Gama P., Dauphin A., Raquin L., Status of the ASTRID gas power conversion system option. GIF Symposium 2018, the Generation IV International Forum, Paris, October 2018.
[8] Simanjuntak A.P., Lee J.Y., Mechanical integrity analysis of a printed circuit heat exchanger with channel misalignment. Applied Sciences, 2020, 10: 2169.
[9] Lee Y., Lee J.I., Structural assessment of intermediate printed circuit heat exchanger for sodium-cooled fast reactor with supercritical CO2 cycle. Annals of Nuclear Energy, 2014, 73: 84–95.
[10] De la Torre R., François J.L., Lin C.X., Assessment of the design effects on the structural performance of the Printed Circuit Heat Exchanger under very high temperature condition. Nuclear Engineering and Design, 2020, 365: 110713.
[11] Park C.G., Kim H.W., Cho J.H., Kim J.B., Kim S.K., Structural design and evaluation of a steam generator in PGSFR. International Conference on Fast Reactors and Related Fuel Cycles: Next Generation Nuclear Systems for Sustainable Development, 2017, Report number IAEA-CN245-162.
[12] Wu J., Yao S., Zhao Z., Xiao Q., Ke Z., Lin Y., Thermal stress analysis of printed circuit heat exchanger based on thermal-structural coupling method. IOP Publishing, Conference series Materials Science and Engineering, 2020, 721: 012034.
[13] Bornert M., Bretheau T., Gilormini P., Homogénéisation en mécanique des matériaux 1 – Matériaux aléatoires élastiques et milieux périodiques, Hermes Science Publication, 2001. (in French)
[14] Charollais F., Bauer M., Coster M., Jeulin D., Trotabas M., Modelling the structure of a nuclear ceramic obtained by solid phase sintering. Acta Stereologica, 1997, 16: 315–321.
[15] Onimus F., Bechade J.L., A polycrystalline modelling of the mechanical behaviour of neutron irradiated zirconium alloys. Journal of Nuclear Materials, 2009, 384: 163–174.
[16] Jeulin D., Modèles morphologique de structures aléatoire et de changement d’échelle, Université de Caen, 1991. (in French)
[17] Jeulin D., Proceedings of the symposium on the advances in the theory and applications of random sets. World Scientific Publishing Company, Singapore, 1997.
[18] El Abdi A., Castelier E., Bouloré A., Michel J.C., Lantuéjoul C., et al., Génération de microstructures de combustible nucléaire hétérogène et homogénéisation mécanique. Colloque national Mécamat ”Matériaux Numériques”, January 2018. (in French)
[19] Cartaud P., Messager T., Computational homogenization of periodic beam-like structures. International Journal of Solids and Structures, 2006, 43: 686–696.
[20] Lewiński T., Homogenizing stiffnesses of plates with periodic structure. International Journal of Solids and Structures, 1992, 29: 309–326.
[21] Gonella S., Ruzzene M., Homogenization and equivalent in-plane properties of two-dimensional periodic lattices. International Journal of Solids and Structures, 2008, 45: 2897–2915.
[22] Brockenborough J.R., Sureh S., Wienecke H.A., Deformation of metal matrix composites with continuous fibers: geometrical effects of fiber distribution and shape. Acta Metallurgica Materialla, 1991, 39: 735–752.
[23] Pastor J., Ohayon J., Disdier C., Homogénéisation périodique et composites à fibres actives, Compte rendu, Académie des Sciences Paris, t. 326, Série II b,
Mécanique des solides et des structures, 1998. (in French)
[24] Gornet L., Marckmann G., Lombard M., Détermination des coefficients d’élasticité et de rupture d'âmes nids d’abeilles Nomex®: Homogénéisation périodique et simulation numérique. Mechanics & Industry, 2005, 6(6): 595–604. (in French)
[25] Di Paola F., Modélisation multi-échelles du comportement thermo-élastique de composites à particules sphériques, Ecole Centrale Paris, 2010. (in French)
[26] Castelier E., Homogenization of one dimensional SiC/SiC composites in traction condition. International Conference on Fusion Reactor Materials, Nice (France), 10–14 Dec, 2007, Paper ICFRM2007/132.
[27] Rohmer E., Couégnat G., Caty O., Lorette C., Modelling the mechanical properties of SiCf/SiC. 17èmes Journées Nationales sur les Composites (JNC17), Poitiers-Futuroscope, France, June 2011. (in French)
[28] Chateau C., Gélébart L., Bornert M., Multiscale approach of mechanical behaviour of Sic/Sic composites: elastic behaviour at the scale of the tow. Technische Mechanik, 2010, 30: 45–55.
[29] Ge L., Jiang W., Zhang Y., Tu S.T., Analytical evaluation of the homogenized elastic constants of plate-fin structures. International Journal of Mechanical Sciences, 2017, 134: 51–62.
[30] Xu X.F., Qiao P., Homogenized elastic properties of honeycomb sandwich with skin effect. International Journal of Solids and Structures, 2002, 39: 2153– 2188.
[31] Dirrenberger J., Forest S., Simulation et homogénéisation de microstructures périodiques, Centre des Matériaux, Mines ParisTech, 2010. (in French)
[32] Tsuda M., Takemura E., Asada T., Ohno N., Igari T., Homogenized elastic-viscoplastic behaviour of plate-fin structures at high temperatures: Numerical analysis and macroscopic constitutive modelling. International Journal of Mechanical Sciences, 2010, 52: 648–656.
[33] Tsuda M., Ohno N., Duplex model for homogenized elastic-viscoplastic behavior of plate-fin. International Journal of Plasticity, 2011, 27: 1560–1576.
[34] Mizokami Y., Igari T., Kawashima F., Sakakibara N., Tanihira M., Yuhara T., Hiroe T., Development of structural design procedure of plate-fin heat exchanger for HTGR. Nuclear Engineering and Design, 2013, 255: 248–262.
[35] Ge L., Jiang W., Wang Y., Tu S.T., Creep-fatigue strength design of plate-fin heat exchanger by a homogeneous method. International Journal of Mechanical Sciences, 2018, 146–147: 221–233.
[36] Jiang W., Ge L., Zhang Y., Gong J., Tu S., Xie X., Method for creep-fatigue strength of plate-fin heat exchanger. Patent No. US 10289772 B2, May 2019.
[37] Planel O., Brisson S., Homogenization method: A way to improve finite element analysis on brazed heat exchangers. Conference SAE 2004 World Congress & Exhibition, 2004.