[1] Radebaugh R., Cryocoolers: The state of the art and recent developments. Journal of Physics: Condensed Matter, 2009, 21(16): 164219.
[2] Radebaugh R., Thermodynamics of regenerative refrigerators. Generation of Low Temperature and Its Applications, Shonan Research Center, Kamakura, Japan, 2003, pp. 1–20.
[3] Wilson K.B, Gedeon D.R., Status of pulse tube cryocooler development at Sunpower. Cryocoolers, 2005, 13: 31–40.
[4] Wang B., Gan Z., A critical review of liquid helium temperature high frequency pulse tube cryocoolers for space applications. Progress in Aerospace Sciences, 2013, 61: 43–70.
[5] Dang H., Development of high performance moving-coil linear compressors for space Stirling-type pulse tube cryocoolers. Cryogenics, 2015, 68: 1–18.
[6] Bradley P.E, Radebaugh R., Garaway I., et al., Progress in the development and performance of a high frequency 4 K Stirling-type pulse tube cryocooler. Cryocoolers, 2011, 16: 27–33.
[7] Collaudin B., Rando N., Cryogenics in space: A review of the missions and of the technologies. Cryogenics, 2000, 40(12): 797–819.
[8] Olson J., Nast T.C., Evtimov B., et al., Development of a 10 K pulse tube cryocooler for space applications. Cryocooler, 2003, 12: 241–246. DOI: 10.1007/0-306-47919-2_33.
[9] Narasaki K., Tsunematsu S., Kanao K., et al., Mechanical coolers operating below 4.5 K for space application. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2006, 559(2): 644–647.
[10] Liu X., Chen L., Wu X., et al., Attaining the liquid helium temperature with a compact pulse tube cryocooler for space applications. Science China Technological Sciences, 2020, 63(3): 434–439.
[11] Dang H., Zha R., Tan J., et al., Investigations on a 3.3 K four-stage Stirling-type pulse tube cryocooler. Part A: Theoretical analyses and modelling. Cryogenics, 2020, 105: 103014.
[12] Dang H., Zha R., Tan J., et al., Investigations on a 3.3 K four-stage Stirling-type pulse tube cryocooler. Part B: Experimental verifications. Cryogenics, 2020, 105: 103015.
[13] Wu X., Chen L., Liu X., et al., An 80 mW/8 K high-frequency pulse tube refrigerator driven by only one linear compressor. Cryogenics, 2019, 101: 7–11.
[14] Chen L., Wu X., Liu X., et al., Numerical and experimental study on the characteristics of 4 K gas-coupled Stirling-type pulse tube cryocooler. International Journal of Refrigeration, 2018, 88: 204–210.
[15] Chen L., Wu X., Wang J., et al., Study on a high frequency pulse tube cryocooler capable of achieving temperatures below 4 K by helium-4. Cryogenics, 2018, 94: 103–109.
[16] Gifford W.E., Longsworth R.C., Pulse-tube refrigeration. Journal of Manufacturing Science and Engineering, 1964, 86(3): 264–268.
[17] Mikulin E.I., Tarasov A.A., Shkrebyonock M.P., Low temperature expansion pulse tubes. Advances in Cryogenic Engineering, 1984, 29: 629–637.
[18] Radebaugh R., Zimmerman J., Smith D.R., et al., A comparison of three types of pulse tube refrigerators: new method for reaching 60 K. Advances in Cryogenic Engineering, 1986, 31: 779–789.
[19] Zhu S., Wu P., Chen Z., Double inlet pulse tube refrigerators: an important improvement. Cryogenics, 1990, 30(6): 514–520.
[20] Tominaga A., Phase controls for pulse tube refrigerator of the third generation. TEION KOGAKU (Journal of Cryogenics and Superconductivity society of Japan), 1992, 27(2): 147–151.
[21] Kanao K., Watanabe N., Kanazawa Y., A miniature pulse tube refrigerator for temperature below 100 K. Cryogenics, 1990, 30(7–10): 167–170.
[22] Qiu L., Cao Q., Zhi X., et al., A three-stage Stirling pulse tube cryocooler operating below the critical point of helium-4. Cryogenics, 2011, 51(10): 609–612.
[23] Dang H., Bao D., Zhang T., et al., Theoretical and experimental investigations on the three-stage Stirling-type pulse tube cryocooler using cryogenic phase-shifting approach and mixed regenerator matrices. Cryogenics, 2018, 93: 7–16.
[24] Quan J., Liu Y., Liu D., et al., 4 K high frequency pulse tube cryocooler used for terahertz space application. Chinese Science Bulletin, 2014, 59(27): 3490–3494.
[25] Hu J., Dai W., Luo E., et al., Numerical simulation of a three-stage Stirling-type pulse tube cryocooler for 4 K operation. Advances in Cryogenic Engineering, 2008, 985(1): 1531–1538.
[26] Wang K., Dubey S., Choo F.H., et al., Modelling of pulse tube refrigerators with inertance tube and mass-spring feedback mechanism. Applied Energy, 2016, 171: 172–183.
[27] Zhu S., Nogawa M., Pulse tube Stirling machine with warm gas-driven displacer. Cryogenics, 2010, 50(5): 320–330.
[28] Wang X., Zhang Y., Li H., et al., A high efficiency hybrid Stirling-pulse tube cryocooler. AIP Advanced, 2015, 5(3): 037127.
[29] Zhu S., Step piston pulse tube refrigerator. Cryogenics, 2014, 64: 63–69.
[30] Xu J., Hu J., Luo E., et al., Cascade pulse-tube cryocooler using a displacer for efficient work recovery. Cryogenics, 2017, 86: 112–117.
[31] Cai J., Wang J., Zhu W., et al., Experimental analysis of the multi-bypass principle in pulse tube refrigerators. Cryogenics, 1994, 34(9): 713–715.
[32] Zhou Q., Chen L., Zhu X., et al., Development of a high-frequency coaxial multi-bypass pulse tube refrigerator below 14 K. Cryogenics, 2015, 67: 28–30.
[33] Pan C., Wang J., Luo K., et al., Numerical and experimental study of VM type pulse tube cryocooler with multi-bypass operating below 4 K. Cryogenics, 2019, 98: 71–79.
[34] Cao Q., Li Z., Luan M., et al., Investigation on precooling effects of 4 K Stirling-type pulse tube cryocoolers. Journal of Thermal Science, 2019, 28(4): 714–726.
[35] Gedeon D., Sage user’s guide: Stirling, pulse-tube and low-t cooler model classes, 2014.
[36] Hu J., Ren J., Luo E., et al., Study on the inertance tube and double-inlet phase shifting modes in pulse tube refrigerators. Energy Conversion and Management, 2011, 52: 1077–1085.
[37] Ju Y., Wang C., Zhou Y., Dynamic experimental investigation of a multi-bypass pulse tube refrigerator. Cryogenics, 1997, 37: 357–361.
[38] Wang Y., Huai X., Heat transfer and entropy generation analysis of an intermediate heat exchanger in ADS. Journal of Thermal Science, 2018, 27(2): 175–183.
[39] Gao W., Yao M., Chen Y., et al., Performance of S-CO2 Brayton cycle and organic Rankine cycle (ORC) combined system considering the diurnal distribution of solar radiation. Journal of Thermal Science, 2019, 28(3): 463–471.
[40] Radebaugh R., Huang Y., O’Gallagher A., et al., Calculated regenerator performance at 4 K with helium-4 and helium-3. Advances in Cryogenic Engineering 53, Chattanooga, TN, Melville, 2008, 985: 225–234.