[1] Fahmy M., Nabih H., Impact of ambient air temperature and heat load variation on the performance of air-cooled heat exchangers in propane cycles in LNG plants—analytical approach. Energy Conversion and Management, 2016, 121: 22–35.
[2] Fahmy M., Nabih H., El-Rasoul T., Optimization and comparative analysis of LNG regasification processes. Energy, 2015, 91: 371–385.
[3] Uwitonze H., Han S., Jangryeok C., Hwang K., Design process of LNG heavy hydrocarbons fractionation: Low LNG temperature recovery. Chemical Engineering and Processing: Process Intensification, 2014, 85: 187–195.
[4] Lee I., Park J., Moon I., Conceptual design and exergy analysis of combined cryogenic energy storage and LNG regasification processes: cold and power integration. Energy, 2017, 140: 106–115.
[5] Franco A., Casarosa C., Thermodynamic analysis of direct expansion configurations for electricity production by LNG cold energy recovery. Applied Thermal Engineering, 2015, 78: 649–657.
[6] Xue F., Chen Y., Ju Y., A review of cryogenic power generation cycles with liquefied natural gas cold energy utilization. Energy Procedia, 2016, 10: 363–374.
[7] Angelino G., Invernizzi C., The role of real gas Brayton cycles for the use of liquid natural gas physical exergy. Applied Thermal Engineering, 2011, 31: 827–833.
[8] Prananto L., Zaini I., Mahendranata B., Juangsa F., Aziz M., Soelaiman T., Use of the Kalina cycle as a bottoming cycle in a geothermal power plant: Case study of the Wayang Windu geothermal power plant. Applied Thermal Engineering, 2018, 132: 686–696.
[9] Sun X., Yao S., Xu J., Feng G., Yan L., Design and optimization of a full-generation system for marine LNG cold energy cascade utilization. Journal of Thermal Science, 2020, 29(3): 587–596.
[10] Le S., Lee J., Chen C., Waste cold energy recovery from liquefied natural gas (LNG) regasification including pressure and thermal energy. Energy, 2018, 152: 770–787.
[11] Bao J., Lin Y., Zhang R., Zhang N., He G., Strengthening power generation efficiency utilizing liquefied natural gas cold energy by a novel two-stage condensation Rankine cycle (TCRC) system. Energy Conversion and Management, 2017, 143: 312–325.
[12] Bao J., Lin Y., Zhang R., Zhang N., He G., Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery. Applied Thermal Engineering, 2017, 126: 566–582.
[13] Zhao L., Dong H., Tang J., Cai J., Cold energy utilization of liquefied natural gas for capturing carbon dioxide in the flue gas from the magnesite processing industry. Energy, 2016, 105: 45–46.
[14] Salem A., Hudiab E., LNG regasification system to enhance the performance of gas turbines and water desalination systems. International Journal of energy, 2014, 8: 84–90.
[15] Mehrpooya M., Esfilar R., Moosavian S., Introducing a novel air separation process based on cold energy recovery of LNG integrated with coal gasification, transcritical carbon dioxide power cycle and cryogenic CO2 capture. Journal of Cleaner Production, 2017, 142: 1749–1764.
[16] Liu B., Rivière P., Coquelet C., Gicquel R., David F., Investigation of a two stage Rankine cycle for electric power plants. Applied Energy, 2012, 100: 285–294.
[17] Zhang M., Zhao L., Liu C., Cai Y., Xie X., A combined system utilizing LNG and low-temperature waste heat energy. Applied Thermal Engineering, 2016, 101: 525–536.
[18] Sun H., Zhu H., Liu F., Ding H., Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid. Energy, 2014, 70: 317–324.
[19] Yao S.G., Tang L., Xu L.K., Feng G.Z., A supercritical single split longitudinal three-stage Rankine cycle power generation system. China, 2018, CN201710904258.8.
[20] Yao S.G., Xu L.K., Tang L., New cold-level utilization scheme for cascade three-level Rankine cycle using the cold energy of liquefied natural gas. Thermal Science, 2019, 23: 3865–3875.
[21] Yoonho L., LNG-FSRU cold energy recovery regasification using a zeotropic mixture of ethane and propane. Energy, 2019, 173: 857–869.
[22] Zhang G., Li B., Zhang X., Wang Q., Design and simulation analysis of cold energy utilization system of LNG floating storage regasification unit. Earth and Environmental Science, 2019, 300: 022117.
[23] Rao H., Karimi I., Optimal design of boil-off gas reliquefaction process in LNG regasification terminals. Computers & Chemical Engineering, 2018, 117: 171–190.
[24] Wu M., Zhu G., Sun D., He J., Optimization model and application for the recondensation process of boil-off gas in a liquefied natural gas receiving terminal. Applied Thermal Engineering, 2019, 147: 610–622.
[25] Zhang C., Pan Z., Shang L Y., Yang F., BOG treatment process optimization and energy consumption analysis of LNG receiving station. Oil and gas storage and transportation, 2017, 4: 421–425.
[26] Williams P.M., Ahmad M., Connolly B.S., Oatley-Radcliffe D.L., Technology for freeze concentration in the desalination industry. Desalination, 2015, 356: 314–327.
[27] Boulougouris E.K., Papanikolaou A.D., Multi-objective optimisation of a floating LNG terminal. Ocean Engineering, 2008, 35: 787–811.
[28] Mokshin A., Mokshin V., Sharnin L., Adaptive genetic algorithms used to analyze behavior of complex system. Communications in Nonlinear Science and Numerical Simulation, 2019, 71: 174–186.
[29] Chen Q., Worden K., Peng P., Genetic algorithm with an improved fitness function for (N)ARX modelling. Mechanical Systems and Signal Processing, 2007, 21: 994–1007.
[30] Lee S., Choi B., Thermodynamic assessment of integrated heat recovery system combining exhaust-gas heat and cold energy for LNG regasification process in FSRU vessel. Journal of mechanical science and technology, 2016, 30(3): 1389–1398.
[31] Mosaffa A.H., Farshi L.G., Exergoeconomic and environmental analyses of an air conditioning system using thermal energy storage. Applied Energy, 2016, 162: 515–526.
[32] Mosaffa A.H., Mokarram N.H., Farshi L.G., Thermo-economic analysis of combined different ORCs geothermal power plants and LNG cold energy. Geothermics, 2017, 65: 113–125.
[33] Choi I., Lee S., Seo Y., Chang D., Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery. Energy, 2013, 61: 179–195.
[34] Bao J., Lin Y., Zhang R., Zhang N., He G., Effects of stage number of condensing process on the power generation systems for LNG cold energy recovery. Applied Thermal Engineering, 2017, 126: 566–582.