[1] Denton J.D., The 1993 IGTI scholar lecture: Loss mechanisms in turbomachines. Journal of Turbomachinery, 1993, 115(4): 621–656.
[2] Wang H.P., Olson S.J., Goldstein R.J., Eckert E.R.G., Flow visualization in a linear turbine cascade of high performance turbine blades. Journal of Turbomachinery, 1997, 119(1): 1–8.
[3] Langston L.S., Secondary flows in axial turbines—A review. Annals of the New York Academy of Sciences, 2001, 934(1): 11–26.
[4] Cui J., Rao V.N., Tucker P.G., Numerical investigation of secondary flows in a high-lift low pressure turbine. International Journal of Heat and Fluid Flow, 2017, 63: 149–157.
[5] Kan X.X., Wang S.T., Luo L., Su J.X., Investigation of optimizing a compressor cascade with curved blade based on the weight distribution of flow losses. Journal of Engineering Thermophysics, 2018, 39: 504–512.
[6] Prakash C., Cherry D.G., Shin H.W., Machnaim J., Dailey L., Beacock R., Halstead D., Wadia A.R., Effect of loading level and distribution on LPT losses. ASME Turbo Expo 2008: Power for Land, Sea, and Air, Berlin, Germany, 2008, 6: 917–925.
DOI: 10.1115/GT2008-50052.
[7] Howell R.J., Hodson H.P., Schulte V., Schiffer H., Haselbach F., Harvey N.W., Boundary layer development in the BR710 and BR715 LP turbines: The implementation of high-lift and ultra-high-lift concepts. Journal of Turbomachinery, 2002, 124(3): 385–392.
[8] Chen S.W., Zhou Z.H., Wang S.T., Wang Z.Q., Numerical investigation of boundary layer suction on certain highly loaded aspirated compressor at low speeds cascade. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(1): 30–41.
[9] Moustapha S.H., Paron G.J., Wade J.H.T., Secondary flows in cascades of highly loaded turbine blades. Journal of Engineering for Gas Turbines and Power, 1985, 107(4): 1031–1038.
[10] Qu X., Zhang Y.F., Lu X.E., Lei Z.J., Zhu J.Q., The effect of endwall boundary layer and incoming wakes on secondary flow in a high-lift low-pressure turbine cascade at low Reynolds number. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2019, 233(15): 5637–5649.
[11] Coull J.D. Endwall loss in turbine cascades. Journal of Turbomachinery, 2017, 139(8): 081004.
[12] Tan C.Q., Zhang H.L., Xia H.D., Chen H.S., Blade bowing effect on aerodynamic performance of a highly loaded turbine cascade. Journal of Propulsion and Power, 2010, 26(3): 604–608.
[13] Chen S.W., Chen F., Wang K.L., Gu J., Wang Z.Q., Aerodynamic performance study of curved compressor cascades with different camber angles. Journal of Propulsion Technology, 2007, 28(2): 170–175.
[14] Ingram G., Gregory-Smith D., Harvey N., Investigation of a novel secondary flow feature in a turbine cascade with end wall profiling. Journal of Turbomachinery, 2005, 127(1): 209–214.
[15] Weiss A.P., Fottner L., The influence of load distribution on secondary flow in straight turbine cascades. Journal of Turbomachinery, 1995, 117(1): 133–141.
[16] Lyall M.E., Effects of front-loading and stagger angle on endwall losses of high lift low pressure turbine vanes. Air Force Institute of Technology, Ohio, USA, 2012.
[17] Lyall M.E., King P.I., Clark J.P., Sondergaard R., Endwall loss reduction of high lift low pressure turbine airfoils using profile contouring—Part I: Airfoil design. Journal of Turbomachinery, 2014, 136(8): 081005.
[18] Sangston K., Little J., Lyall M.E., Sondergaard R., Effect of blade profile contouring on endwall flow structure in a high-lift low-pressure turbine cascade. Journal of Turbomachinery, 2016, 139(2): 021006.
[19] Tsujita H., Yamamoto A., Influences of incidence angle on 2D-flow and secondary flow structure in ultra-highly loaded turbine cascade. Journal of Thermal Science, 2014, 23(1): 13–21.
[20] Taylor J.V., Miller R.J., Competing three-dimensional mechanisms in compressor flows. Journal of Turbomachinery, 2016, 139(2): 021009.
[21] Goldstein R.J., Spores R.A., Turbulent transport on the endwall in the region between adjacent turbine blades. Journal of Heat Transfer, 1988, 110(4a): 862–869.
[22] Zess G.A., Thole K.A., Computational design and experimental evaluation of using a leading edge fillet on a gas turbine vane. Journal of Turbomachinery, 2002, 124(2): 167–175.
[23] Sangston K., Little J., Lyall M.E., Sondergaard R., End wall loss reduction of high lift low pressure turbine airfoils using profile contouring—Part II: Validation. Journal of Turbomachinery, 2014, 136(8): 081006.
[24] Ingram G., Gregory-Smith D., Rose M., Harvey N., Brennan G., The effect of end-wall profiling on secondary flow and loss development in a turbine cascade. ASME Turbo Expo 2002: Power for Land, Sea, and Air, Amsterdam, Netherlands, 2002, 5: 135–145. DOI: 10.1115/GT2002-30339.
[25] Torre D., Vázquez R., Blanco E.D.L.R., Hodson H.P., A new alternative for reduction in secondary flows in low pressure turbines. Journal of Turbomachinery, 2010, 133(1): 011029.
[26] Tan C.Q., Yamamoto A., Mizuki S., Chen H.S., Influences of blade bowing on flow fields of turbine stator cascades. AIAA Journal, 2003, 41(10): 1967–1972.
[27] Han W.J., Wang Z.Q., Tan C.Q., Shi H., Wang Z.Q., Effects of leaning and curving of blades with high turning angles on the aerodynamic characteristics of turbine rectangular cascades. Journal of Turbomachinery, 1994, 116(3): 417–424.
[28] Xue X.X., Wang S.T., Luo L., Zhou X., The compound bowing design in a highly loaded linear cascade with large turning angle. Proceedings of the Institution of Mechanical Engineers Part G-Journal of Aerospace Engineering, 2020, 234(16): 2323–2336.
[29] Zweifel O., The spacing of turbo-machine blading, especially with large angular deflection. Brown Boveri Review, 1945, 32(12): 436–444.
[30] Bear P., Wolff M., Gross A., Marks C.R., Sondergaard R., Experimental investigation of total pressure loss development in a highly loaded low-pressure turbine cascade. Journal of Turbomachinery, 2017, 140(3): 031003.
[31] Coull J.D., Hodson H.P., Blade loading and its application in the mean-line design of low pressure turbines. Journal of Turbomachinery, 2013, 135(2): 021032.
[32] Hunt J.C.R., Wray A., Moin P., Eddies, stream and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases: Proceedings of the 1988 Summer Program, 1988, California, USA, 19890015184.
[33] Haller G., An objective definition of a vortex. Journal of Fluid Mechanics, 2005, 525: 1–26.
[34] ANSYS CFX. Reference Guide, Relaease 15, 2013.
[35] Wang W.H., Lu Z.H., Deng K.Y., Qu S., An experimental study of compressible combining flow at 45° T-junctions. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2015, 229(9): 1600–1610.
[36] Kurz J., Hoeger M., Niehuis R., Active boundary layer control on a highly loaded turbine exit case profile. International Journal of Turbomachinery, Propulsion and Power, 2018, 3(8): 1–14.
[37] Zhong J.J., An experimental investigation by using curved blade to control secondary flow in compressor cascade. Harbin Institute of Technology, Heilongjiang, China, 1996.
[38] Ling J., Study of the influence of cascade parameters on curved blade loss and deviation in compressor cascade. Harbin Institute of Technology, Heilongjiang, China, 2015.
[39] Bardera R., Meseguer J., Flow in the near air wake of a modified frigate. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2015, 229(6): 1003–1012.
[40] Hao Y., Liu Y.W., Li Q.S., Lu L.P., Turbulence characteristics in corner separation in a highly loaded linear compressor cascade. Aerospace Science and Technology, 2018, 75: 139–154.
[41] Amiralaei M.R., Alighanbari H., Hashemi S.M., Numerical modelling of a low Reynolds number plunging airfoil flow field characteristics. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(8): 1251–1264.
[42] Xu W.J., Du X., Wang S.T., Wang Z.Q., Correlation of solidity and curved blade in compressor cascade design. Applied Thermal Engineering, 2018, 131: 244–259.
[43] Blanco E.R.D.L., Hodson H.P., Vazquez R., Torre D., Influence of the state of the inlet endwall boundary layer on the interaction between pressure surface separation and endwall flows. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2003, 217(4): 433–441.
[44] Xue X.X., Zhou X., Liu X., Wen F.B., Investigation on pitch-wise non-uniform and inflecting inlet flow of low-speed plane cascade. ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, Seoul, South Korea, 2016, V02AT37A028. DOI: 10.1115/GT2016-56934.
[45] Chester N.L., Wells M.A., Prodanovic V., Effect of inclination angle and flow rate on the heat transfer during bottom jet cooling of a steel plate. Journal of Heat Transfer, 2012, 134(12): 122201.