[1] Environmental quality (clean air) regulations. Available at:
https://www.doe.gov.my/portalv1/en/info-hebahan/pengumumanteks/peraturan-peraturan-kualiti-alam-sekeliling-udara-bersih-2014-akta-kualiti-alam-sekeliling-1974/314995, 2014.
[2] Clean air regulation Quebec. Available at: http://www.legisquebec.gouv.qc.ca/en/showdoc/cr/Q2%20r.%204.1, 2019.
[3] Muduli S.K., Mishra R.K., Mishra P.C., Assessment of exit temperature pattern factors in an annular gas turbine combustor: An overview. International Journal of Turbo & Jet-Engines, 2019. DOI: 10.1515/tjj-2019-0009
[4] Bauer H.J., Eigenmann L., Scherrer B., Wittig S., Local measurements in a three dimensional jet-stabilized model combustor. In Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, Presented at the International Gas Turbine and Aeroengine Congress and Exposition, Houston, Texas, 1995, Papar No. 95-GE-071, V003T06A015.
[5] Kurreck M., Willmann M., Wittig S., Prediction of the three-dimensional reacting two-phase flow within a jet-stabilized combustor. Journal of Engineering for Gas Turbines and Power, 1998, 120: 77–83.
[6] Zeinivand H., Bazdidi-Tehrani F., Influence of stabilizer jets on combustion characteristics and NOx emission in a jet-stabilized combustor. Applied Energy, 2012, 92: 348–360.
[7] Lee M.C., Chung J.H., Park W.S., Park S., Yoon Y., The combustion tuning methodology of an industrial gas turbine using a sensitivity analysis. Applied Thermal Engineering, 2013, 50(1): 714–772.
[8] Sun J., Zhang Z., Liu X., Zheng H., Reduced methane combustion mechanism and Verification, Validation, and Accreditation (VV&A) in CFD for NO emission prediction. Journal of Thermal Science, 2021, 30(2): 610–623.
[9] Tarokh A., Lavrentev A., Mansouri A., Numerical investigation of effect of porosity and fuel inlet velocity on diffusion filtration combustion. Journal of Thermal Science, 2021, 30(4): 1278–1288.
[10] Zhu Z., Xiong Y., Zheng X., Chen W., Ren B., Xiao Y., Experimental and numerical study of the effect of fuel/air mixing modes on NOx and CO Emissions of MILD combustion in a boiler burner. Journal of Thermal Science, 2021, 30(2): 656–667.
[11] Ding G., He X., Zhao Z., An B., Song Y., Zhu Y., Effect of dilution holes on the performance of a triple swirler combustor. Chinese Journal of Aeronautics, 2014, 27(6): 1421–1429.
[12] Mishra R.K., Chandel S., Soot formation and its effect in an aero gas turbine combustor. International Journal of Turbo & Jet-Engines, 2019, 36(1): 61–73.
[13] Bazdidi-Tehrani F., Mirzaei S., Abedinejad M.S., Influence of chemical mechanisms on spray combustion characteristics of turbulent flow in a wall jet can combustor. Energy & Fuel, 2017, 31(7): 7523–7539.
[14] Alemi E., Zargarabadi M.R., Effects of jet characteristics on NO formation in a jet-stabilized combustor. International Journal of Thermal Sciences, 2017, 112: 55–67.
[15] Xiao Y.L., Cao Z.B., Wang C., The effect of dilution air jets on aero-engine combustor performance. International Journal of Turbo & Jet-Engines, 2018, 36(3): 257–269.
[16] Durakovic B., Design of experiments application, concepts, examples: State of the art. Periodicals of Engineering and Natural Sciences, 2017, 5(3): 421–439.
[17] Zhang Z., Chen L., Lu Y., Roskilly A.P., Yu X., Smallbone A., Wang Y., Lean ignition and blow-off behaviour of butyl butyrate and ethanol blends in a gas turbine combustor. Fuel, 2019, 239: 1351–1362.
[18] Bazdidi-Tehrani F., Abedinejad M.S., Mohammadi M., Analysis of relationship between entropy generation and soot formation in turbulent kerosene/air jet diffusion flames. Energy & Fuels, 2019, 33(9): 9184–9195.
[19] Lee C.C., Tran M., Scribano G., Chong C.T., Ooi J.B., Cong H.T., Numerical study of NOx and soot formations in hydrocarbon diffusion flames. Energy & Fuels, 2019, 33(12): 12839–12851.
[20] Sadatakhavi S.M.R., Tabejamaat S., EiddiAttarZade M., Kankashvar B., Nozari M.R., Numerical and experimental study of the effects of fuel injection and equivalence ratio in a can micro-combustor at atmospheric condition. Energy, 2021, 225: 120166.
[21] Echekki T., Mastorakos E., Turbulent combustion: concepts, governing equations and modeling strategies. In Echekki T. and Mastorakos E. (eds), Turbulent Combustion Modeling, Springer, Dordrecht, 2011, pp. 19–39.
[22] Gosman A., Loannides E., Aspects of computer simulation of liquid-fueled combustors. Journal of Energy, 2006, 7(6): 482–490.
[23] Sazhin S.S., Advanced models of fuel droplet heating and evaporation. Progress in Energy and Combustion Science, 2006, 32(2): 162–214.
[24] Bowman C.T., Course notes on combustion. Stanford University course reference material for ME 371: Fundamentals of Combustion, 2004.
[25] Berlemont A., Grancher M., Gouesbet G., Heat and mass transfer coupling between vaporizing droplets and turbulence using a Lagrangian approach. International Journal of Heat and Mass Transfer, 1995, 38(16): 3023–3034.
[26] Park J.H., Yoon Y., Hwang S.S., Improved TAB model for prediction of spray droplet deformation and breakup. Atomization and Sprays, 2002, 12(4): 387–401.
[27] Ranz W., Marshall W.R., Evaporation from drops. Chemical Engineering Progress, 1952, 48(3): 141– 146.
[28] De S., Agarwal A.K., Chaudhuri S., Sen S. (eds.), Modeling and simulation of turbulent combustion. Springer Singapore, 2018.
[29] Shih T.H., Liou W.W., Shabbir A., Yang Z., Zhu J., A new k-epsilon eddy viscosity model for high Reynolds number turbulent flows: Model development and validation. Computers & Fluids, 1995, 24(3): 227–238.
[30] Peters N., Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 1984, 10(3): 319–339.
[31] Pitsch H., Peters N., A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combustion and Flame, 1998, 114(1–2): 26–40.
[32] Peters N., Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in Energy and Combustion Science, 1984, 10(3): 319–339.
[33] Zeldovich Y., Frank-Kamenetskii D., Sadovnikov P., Oxidation of nitrogen in combustion. Publishing House of the Acad of Sciences of USSR, 1947.
[34] De Soete G.G., Overall reaction rates of NO & N2 formation from fuel nitrogen. Symposium (international) on Combustion. Toshi Center Hall Tokyo, Japan, 1975, 15: 1093–1102.
[35] Hall R., Smooke M., Colket M., Physical and chemical aspects of combustion. Gordon and Breach, 1997.
[36] Brookes S., Moss J., Predictions of soot and thermal radiation properties in confined turbulent jet diffusion flames. Combustion and Flame, 1999, 116(4): 486–503.
[37] Raithby G., Chui E., A finite-volume method for predicting a radiant heat transfer in enclosures with participating media. ASME, Transactions, Journal of Heat Transfer, 1990, 112: 415–423.
[38] Gamil A.A., Nikolaidis T., Lelaj I., Laskaridis P., Assessment of numerical radiation models on the heat transfer of an aero-engine combustion chamber. Case Studies in Thermal Engineering, 2020, 22: 100772.
[39] Schepdael V., Carlier A., Geris L., Sensitivity analysis by design of experiments. In: Geris, L., Gomez-Cabrero, D. (eds) Uncertainty in Biology. 2016, pp. 327–366. Studies in Mechanobiology, Tissue Engineering and Biomaterials, Vol. 17. Springer, Cham.
https://doi.org/10.1007/978-3-319-21296-8_13
[40] Müller A.L., de Oliveira J.A., Prestes O.D., Adaime M.B., Zanella R., Design of experiments and method development. In: Solid-Phase Extraction, Elsevier, 2020, pp. 589–608.
[41] Fisher R.A., Statistical methods for research workers. In: Breakthroughs in Statistics, Springer, New York, NY, 1992, pp. 66–70.
[42] Minitab, “MINITAB 19.1”, 2019.
[43] Lefebvre A.H., Ballal D.R., Gas turbine combustion: alternative fuels and emissions. CRC Press, 2010.
[44] Hoffman K.A., Chiang S.T., Computational fluid dynamics. Engineering education system, Vol. 2, 2000.
[45] Westbrook C., Dryer F., Chemical kinetic modelling of hydrocarbon combustion. Progress in Energy and Combustion Science, 1984, 10: 1–57.
[46] Toof J., A model for the prediction of thermal, prompt, and fuel NOx emissions from combustion turbines. ASME Journal of Engineering for Gas Turbines and Power, 1986, 108: 340–347.
[47] Pal D., Sharma A., Iliyas A., Development of a CFD model for steam cracker radiant coil using molecular kinetics. Indian Chemical Engineer, 2020, 62(2): 105–117.