[1] Wang X., Gao Z., Gao X., et al., Investigation on the vapor-liquid equilibrium for the ternary mixture HFC-32+HFC-125+HFC-161 at temperatures from 265.15 K to 303.15 K. Journal of Chemical & Engineering Data, 2015, 60(9): 2721–2727.
[2] Harby K., Hydrocarbons and their mixtures as alternatives to environmental unfriendly halogenated refrigerants—An updated overview. Renewable and Sustainable Energy Reviews, 2017, 73: 1247–1264.
[3] Ciconkov R., Refrigerants: There is still no vision for sustainable solutions. International Journal of Refrigeration, 2018, 86: 441–448.
[4] Gao N., Wang X., Xuan Y., et al., An artificial neural network for the residual isobaric heat capacity of liquid HFC and HFO refrigerants. International Journal of Refrigeration, 2019, 98: 381–387.
[5] Fang Y., Croquer S., Poncet S., et al., Drop-in replacement in a R134 ejector refrigeration cycle by HFO refrigerants. International Journal of Refrigeration, 2017, 77: 87–98.
[6] Sánchez D., Cabello R., Llopis R., et al., Energy performance evaluation of R1234yf, R1234ze(E), R600a, R290 and R152a as low-GWP R134a alternatives. International Journal of Refrigeration, 2017, 74: 269– 282.
[7] Mota-Babiloni A., Makhnatch P., Khodabandeh R., Recent investigations in HFCs substitution with lower GWP synthetic alternatives: Focus on energetic performance and environmental impact. International Journal of Refrigeration, 2017, 82: 288–301.
[8] Huber M.L., Assael M.J., Correlations for the viscosity of 2, 3, 3, 3-tetrafluoroprop-1-ene(R1234yf) and trans-1, 3, 3, 3-tetrafluoropropene (R1234ze(E)). International Journal of Refrigeration, 2016, 71: 39–45.
[9] Khosharay S., Pierantozzi M., Nicola G.D., Modeling investigation on the viscosity of pure refrigerants and their liquid mixtures by using the Patel-Teja viscosity equation of state. International Journal of Refrigeration, 2018, 85: 255–267.
[10] Yousefi F., Hosseini S.M., Hamidi K., Pierantozzi M., Viscosities of liquid refrigerants from a rough hard- sphere theory-based semi-empirical model. International Journal of Thermopyhsics, 2019, 40(8): 74.
[11] He M., Qi X., Liu X., et al., Estimating the viscosity of pure refrigerants and their mixtures by free-volume theory. International Journal of Refrigeration, 2015, 54: 55–66.
[12] Zéberg-Mikkelsen C.K., Baylaucq A., Barrouhou M., et al., Comparative study of viscosity models on the ternary system methylcyclohexane + cis-decalin + 2, 2, 4, 4, 6, 8, 8-heptamethylnonane up to 100 MPa. Fluid Phase Equilibria, 2004, 222–223: 135–148.
[13] Wang X., Yan Y., Meng X., et al., A general method to predict the performance of closed pulsating heat pipe by artificial neural network. Applied Thermal Engineering, 2019, 157: 113761.
[14] Wang X., Yan X., Gao N., et al., Prediction of thermal conductivity of various nanofluids with ethylene glycol using artificial neural network. Journal of Thermal Science, 2019, 29: 1504–1512.
[15] Wang X., Li B., Yan Y.Y., et al., Predicting of thermal resistances of closed vertical meandering pulsating heat pipe using artificial neural network model. Applied Thermal Engineering, 2019, 149: 1134–1141.
[16] Scalabrin G., Cristofoli G., The viscosity surfaces of R152a in the form of multilayer feed forward neural networks. International Journal of Refrigeration, 2003, 26(3): 302–314.
[17] Cristofoli G., Piazza L., Scalabrin G., A viscosity equation of state for R134a through a multi-layer feedforward neural network technique. Fluid Phase Equilibria, 2002, 199(1): 223–236.
[18] Zhi L.H., Hu P., Chen L.X., et al., Viscosity prediction for six pure refrigerants using different artificial neural networks. International Journal of Refrigeration, 2018, 88: 432–440.
[19] Ghaderi F., Ghaderi A.H., Najafi B., et al., Viscosity prediction by computational method and artificial neural network approach: The case of six refrigerants. The Journal of Supercritical Fluids, 2013, 81: 67–78.
[20] Huber M.L., Friend D.G., Ely J.F., Prediction of the thermal conductivity of refrigerants and refrigerant mixtures. Fluid Phase Equilibria, 1992, 80: 249–261.
[21] Scalabrin G., Piazza L., Grigiante M., et al., Thermal conductivity modeling of pure refrigerants in a three-parameter corresponding states format. International Journal of Thermophysics, 2005, 26(2): 373–398.
[22] Pierantozzi M., Petrucci G., Modeling thermal conductivity in refrigerants through neural networks. Fluid Phase Equilibria, 2018, 460: 36–44.
[23] Wang X., Li Y., Yan Y., et al., Prediction on the viscosity and thermal conductivity of HFC/HFO refrigerants with artificial neural network models. International Journal of Refrigeration, 2020, 119: 316–325.
[24] Rosenfeld Y., Relation between the transport coefficients and the internal entropy of simple systems. Physical Review A, 1977, 15(6): 2545–2549.
[25] Dyre J.C., Perspective: Excess-entropy scaling. The Journal of Chemical Physics, 2018, 149(21): 210901.
[26] Fouad W.A., Vega L.F., Transport properties of HFC and HFO based refrigerants using an excess entropy scaling approach. The Journal of Supercritical Fluids, 2018, 131: 106–116.
[27] Assael M.J., Polimatidou S.K., Measurements of the viscosity of liquid R22, R124, and R125 in the temperature range 273–333 K at pressures up to 17 MPa. International Journal of Thermophysics, 1994, 15(5): 779–790.
[28] Assael M.J., Karagiannidis L., Measurements of the thermal conductivity of liquid R32, R124, R125, and R141b. International Journal of Thermophysics, 1995, 16(4): 851–865.
[29] Avelino H., Fareleira J., Oliveira C., Viscosity of compressed liquid 1, 1, 1-Trifluoroethane (HFC-143a) and Pentafluoroethane (HFC-125). Journal of Chemical & Engineering Data, 2006, 51(5): 1672–1677.
[30] Gross U., Song Y.W., Thermal conductivities of new refrigerants R125 and R32 measured by the transient hot-wire method. International Journal of Thermophysics, 1996, 3(17): 607–619.
[31] Ripple D., Matar O., Viscosity of the saturated liquid phase of six halogenated compounds and three mixtures. Journal of Chemical and Engineering Data, 1993, 38: 560–564.
[32] Le Neindre B., Garrabos Y., Measurements of the thermal conductivity of HFC-125 in the temperature range from 300 to 515 K at pressures up to 53 MPa. International Journal of Thermophysics, 1999, 20(2): 375–399.
[33] Sun L., Zhu M., Han L., et al., Viscosity of Difluoromethane and Pentafluoroethane along the saturation line. Journal of Chemical & Engineering Data, 1996, 41(2): 292–296.
[34] Asseal M.J., Dymond J.H., Polimatidou S.K., Measurements of the viscosity of R134a and R32 in the temperature range 270-340 K at pressures up to 20 MPa. International Journal of Thermophysics, 1994, 15(4): 591–601.
[35] Assael M.J., Karagiannidis E., Measurements of the thermal conductivity of R22, R123, and R134a in the temperature range 250–340 K at pressures up to 30 MPa. International Journal of Thermophysics, 1993, 14(2): 183–197.
[36] Meng X., Zhang J., Wu J., Compressed liquid viscosity of 1, 1, 1, 3, 3-Pentafluoropropane (R245fa) and 1, 1, 1, 3, 3, 3-Hexafluoropropane (R236fa). Journal of Chemical & Engineering Data, 2011, 56(12): 4956–4964.
[37] Gross U., Song Y., Hahne E., Thermal conductivity of the new refrigerants R134a, R152a, and R123 measured by the transient hot-wire method. International Journal of Thermophysics, 1992, 13(6): 957–983.
[38] Okubo T., Hasuo T., Nagashima A., Measurement of the viscosity of HFC 134a in the temperature range 213–423 K and at pressures up to 30 MPa. International Journal of Thermophysics, 1992, 13(6): 931–942.
[39] Laesecke A., Perkins R.A., Castro C.A., Thermal conductivity of R134a. Fluids Phase Equilibria, 1992, 80: 263–274.
[40] Tsvetkov O.B., Laptev Y.A., Asambaev A.G., Thermal conductivity of refrigerants R123, R134a, and R125 at low temperatures. International Journal of Thermophysics, 1994, 15(2): 203–214.
[41] Lee S.H., Kim M.S., Ro S.T., Thermal conductivity of 1, 1, 1-Trifluoroethane (R143a) and R404A in the liquid phase. Journal of Chemical & Engineering Data, 2001, 46(5): 1013–1015.
[42] Kumagai A., Takahashi S., Viscosity of saturated liquid fluorocarbon refrigerants from 273 to 353 K. International Journal of Thermophysics, 1991, 12(1): 105–117.
[43] Neindre B.L., Garrabos Y., Kim M.S., Measurements of the thermal conductivity of HFC-143a in the temperature range from 300 to 500 K at pressures up to 50 MPa. International Journal of Thermophysics, 2001, 22(3): 723–748.
[44] Srinivasan K., Oellrich L.R., Saturation properties of the refrigerant 143A. International Journal of Refrigeration, 1997, 20(5): 332–338.
[45] Assael M.J., Polimatidou S.K., Vogel E., et al., Measurements of the viscosity of R11, R12, R141b, and R152a in the temperature range 270–340 K at Pressures up to 20 MPa. International Journal of Thermophysics, 1994, 15(4): 575–589.
[46] Gulik P.S., Viscosity of saturated R152a measured with a vibrating wire viscometer. International Journal of Thermophysics, 1994, 16(4): 867–876.
[47] Gulik P.S., The Viscosity of the refrigerant 1, 1-Difluoroethane along the saturation line. International Journal of Thermophysics, 1993, 14(4): 851–864.
[48] Fan J., Zhao X., Guo Z., et al. Saturated liquid viscosity of Ethyl Fluoride (HFC161) from 233 K to 373 K. International Journal of Thermophysics, 2012, 33(12): 2243–2250.
[49] Tsolakidou C.M., Assael M.J., Huber M.L., et al., Correlations for the viscosity and thermal conductivity of Ethyl Fluoride (R161). Journal of Physical and Chemical Reference Data, 2017, 46(2): 23103.
[50] Meng X., Gu X., Wu J., et al., Viscosity measurements of Ethyl Fluoride (R161) from 243 K to 363 K at pressures up to 30 MPa. International Journal of Thermophysics, 2015, 36(10–11): 2497–2506.
[51] Yao C.Q., Zhao X.M., Lv S.H., et al., Thermal conductivity of ethyl fluoride (HFC161). Fluid Phase Equilibra, 2014, 375: 228–235.
[52] Liu X., Shi L., Han L., et al., Liquid viscosity of 1, 1, 1, 2, 3, 3, 3-Heptafluoropropane (HFC-227ea) along the Saturation Line. Journal of Chemical & Engineering Data, 1999, 44(4): 688–692.
[53] Baginskii A.V., Stankus S.V., Thermodynamic and transport properties of liquid HFC-227ea. International Journal of Thermophysics, 2003, 24(4): 953–961.
[54] Laesecke A., Viscosity of 1, 1, 1, 2, 3, 3-Hexafluoropropane and 1, 1, 1, 3, 3, 3-Hexafluoropropane at saturated-liquid conditions from 262 K to 353 K. Journal of Chemical and Engineering Data, 1996, 41: 59–62.
[55] Laesecke A., Hafer R.F., Viscosity of Fluorinated Propane Isomers. 2. measurements of three compounds and model comparisons. Journal of Chemical & Engineering Data, 1998, 43(1): 84–92.
[56] Wang Y., Wu J., Xue Z., et al., Thermal conductivity of HFC-245fa from (243 to 413) K. Journal of Chemical & Engineering Data, 2006, 51(4): 1424–1428.
[57] Yata J., Hori M., Niki M., et al., Coexistence curve of HFC-134a and thermal conductivity of HFC-245fa. Fluid Phase Equilibria, 2000, 174(1–2): 221–229.
[58] Le Neindre B., Garrabos Y., Measurements of the thermal conductivity of HFC-32 (Difluoromethane) in the temperature range from 300 to 465 K at pressures up to 50 MPa. International Journal of Thermophysics, 2001, 22(3): 701–722.
[59] Geller V.Z., Paulaitis M.E., Bivens D.B., et al., Viscosities of HFC-32 and HFC-32+lubricant mixtures. International Journal of Thermophysics, 1996, 17(1): 75–83.
[60] Ro S.T., Kim J.Y., Kim D.S., Thermal conductivity of R32 and its mixture with R134a. International Journal of Thermophysics, 1995, 16(5): 1193–1201.
[61] Dang Y.G., Kamiaka T., Dang C.B., et al., Liquid viscosity of low-GWP refrigerant mixtures (R32+R1234yf) and (R125+R1234yf). Journal of Chemical Thermodynamics, 2015, 89: 183–188.
[62] Perkins R.A., Huber M.L., Measurement and correlation of the thermal conductivity of 2, 3, 3, 3-Tetrafluoroprop-1-ene (R1234yf) and trans -1, 3, 3, 3-Tetrafluoropropene (R1234ze(E)). Journal of Chemical & Engineering Data, 2011, 56(12): 4868–4874.
[63] Meng X., Qiu G., Wu J., et al., Viscosity measurements for 2, 3, 3, 3-tetrafluoroprop-1-ene (R1234yf) and trans-1, 3, 3, 3-tetrafluoropropene (R1234ze(E)). The Journal of Chemical Thermodynamics, 2013, 63: 24–30.
[64] Zhao G., Bi S., Fröba A.P., et al., Liquid viscosity and surface tension of R1234yf and R1234ze under saturation conditions by surface light scattering. Journal of Chemical & Engineering Data, 2014, 59(4): 1366–1371.
[65] Alam M.J., Miyara A., Kariya K., et al., Measurement of viscosity of cis -1, 1, 1, 4, 4, 4-Hexafluoro-2-butene (R-1336mzz(Z)) by tandem capillary tubes method. Journal of Chemical & Engineering Data, 2018, 63(5): 1706–1712.
[66] Alam M.J., Islam M.A., Kariya K., et al., Measurement of thermal conductivity of cis-1, 1, 1, 4, 4, 4-hexafluoro-2-butene (R-1336mzz(Z)) by the transient hot-wire method. International Journal of Refrigeration, 2017, 84: 220–227.
[67] Lemmon E.W., Bell I.H., Huber M.L., et al., REFPROP. version10.0.
[68] Kraft K., Leipertz A., Thermal diffusivity and ultrasonic velocity of saturated R125. International Journal of Thermophysics, 1994, 15(3): 387–399.
[69] Baginsky A.V., Shipitsyna A.S., Thermal conductivity and thermal diffusivity of the R134a refrigerant in the liquid state. Thermophysics and Aeromechanics, 2009, 16(2): 267–273.
[70] Froba A.P., Will S., Leipertz A., Thermal diffusivity and sound speed of the refrigerant R143a (1, 1, 1-Trifluoroethane). International Journal of Thermphysics, 2001, 22(4): 1021–1033.
[71] Kraft K., Leipertz A., Thermal diffusivity and ultrasonic velocity of saturated R152a. International Journal of Thermophysics, 1994, 15(5): 791–802.