[1] Rayleigh J.W.S., The theory of sound, second ed., Macmillan, London, 1896.
[2] Rott N., Thermoacoustics. Advances in Applied Mechanics, 1980, 20: 135–175.
[3] Swift G.W., Thermoacoustic engines. Journal of the Acoustical Society of America, 1988, 84(4): 1145–1180.
[4] Swift G.W., Thermoacoustics: A unifying perspective for some engines and refrigerators, second ed., Springer, 2017.
[5] Luo E.C., Ling H., Dai W., Yu G.Y., Experimental study of the influence of different resonators on thermoacoustic conversion performance of a thermoacoustic-Stirling heat engine. Ultrasonics, 2006, 44(4): 1507–1509.
[6] Saechan P., Dhuchakallaya I., Design and experimental evaluation of a travelling wave thermoacoustic engine. Energy Reports, 2020, 6: 1456–1461.
[7] Nowak I., Rulik S., Wroblewski W., Nowak G., Szwedowicz J., Analytical and numerical approach in the simple modelling of thermoacoustic engines. International Journal of Heat & Mass Transfer, 2014, 77: 369–376.
[8] Tartibu L.K., Developing more efficient travelling-wave thermo-acoustic refrigerators: A review. Sustainable Energy Technologies and Assessments, 2019, 31: 102–114.
[9] Timmer M., Blok K.D., Van D., Review on the conversion of thermoacoustic power into electricity. The Journal of the Acoustical Society of America, 2018, 143(2): 841–857.
[10] Hao H., Scalo C., Semperlotti F., Traveling and standing thermoacoustic waves in solid media. Journal of Sound and Vibration, 2019, 449: 30–42.
[11] Yang P., Chen H., Liu Y., Numerical investigation on nonlinear effect and vortex formation of oscillatory flow throughout a short tube in a thermoacoustic Stirling engine. Journal of Applied Physics, 2017, 121(21): 2455–2463.
[12] Jin T., Huang J.L., Feng F., Yang R., Tang K., Radebaugh R., Thermoacoustic prime movers and refrigerators: Thermally powered engines without moving components. Energy, 2015, 93: 828–853.
[13] Zink F., Vipperman J., Schaefer L., CFD simulation of thermoacoustic cooling. International Journal of Heat and Mass Transfer, 2010, 53(19–20): 3940–3946.
[14] Yu G.Y., Dai W., Luo E.C., CFD simulation of a 300 Hz thermoacoustic standing wave engine. Cryogenics, 2010, 50(9): 615–622.
[15] Liu L., Yang P., Liu. Y.W., Comprehensive performance improvement of standing wave thermoacoustic engine with converging stack: Thermodynamic analysis and optimization. Applied Thermal Engineering, 2019, 160: 114096.
[16] Pang X.M., Dai. W., Wang X.T., Ma S.X., CFD investigation on the characteristics of annular pulse tube. International Journal of Refrigeration, 2020, 114: 181–188.
[17] Chen G., Tang L.H., Mace B.R., Bistability and triggering in a thermoacoustic engine: A numerical study. International Journal of Heat and Mass Transfer, 2020, 157: 119951.
[18] Chen G., Tang L.H., Yu Z.B., Mace B.R., Mode transition in a standing-wave thermoacoustic engine: A numerical study. Journal of Sound and Vibration, 2021, 504: 116119.
[19] Keesom W.H., Helium, Elsevier, Amsterdam, 1942.
[20] Taconis K., Beenakker J., Nier A., Measurements concerning the vapor-liquid equilibrium of solutions of He3 in He4 below 2.19 K. Physical Review, 1949, 75(12): 1966.
[21] Clement J.R., Gaffney J., Thermal oscillation in low temperature apparatus. Advances in Cryogenic Engineering, 1960, 1: 302–306.
[22] Rott N., Damped and thermally driven acoustic oscillations in wide and narrow tubes. Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 1969, 20(2): 230–243.
[23] Rott N., Thermally driven acoustic oscillations. Part II: Stability limit for helium. Zeitschrift Für Angewandte Mathematik Und Physik Zamp, 1973, 24(1): 54–72.
[24] Yazaki T., Tominaga A., Narahara Y., Experiments on thermally driven acoustic-oscillations of gaseous helium. Journal of Low Temperature Physics, 1980, 41(1–2): 45–60.
[25] Yazaki T., Sugioka S., Mizutani F., Mamada H., Nonlinear dynamics of a forced thermoacoustic oscillation. Physical Review Letters, 1990, 64(21): 2515–2518.
[26] Luck H., Trepp C., Thermoacoustic oscillations in cryogenics. Part 1: Basic theory and experimental verification. Cryogenics, 1992, 32(8): 690–697.
[27] Luck H., Trepp C., Thermoacoustic oscillations in cryogenics. Part 2: Applications. Cryogenics, 1992, 32(8): 698–702.
[28] Szargut J., Szczygiel I., Utilization of the cryogenic exergy of liquid natural gas (LNG) for the production of electricity. Energy, 2009, 34(7): 827–837.
[29] Wang K., Dubey S., Choo F.H., Duan F., Thermoacoustic Stirling power generation from LNG cold energy and low-temperature waste heat. Energy, 2017, 127: 280–290.
[30] Wang K., Qiu L.M., Wang B., Sun D., Zhang X.J., A standing-wave thermoacoustic engine driven by liquid nitrogen. AIP Conference Proceedings American Institute of Physics, 2012, 1434: 351–358.
[31] Xu J., Luo E.C., Hochgreb S., A thermoacoustic combined cooling, heating, and power (CCHP) system for waste heat and LNG cold energy recovery. Energy, 2021, 227(8): 120341.
[32] El-Rahman A.A., Abdelfattah W.A., Fouad M.A., A 3D investigation of thermoacoustic fields in a square stack. International Journal of Heat and Mass Transfer, 2017, 108: 292–300.
[33] Kuzuu K., Hasegawa S., Effect of non-linear flow behavior on heat transfer in a thermoacoustic engine core. International Journal of Heat and Mass Transfer, 2017, 108: 1591–1601.
[34] Sun D.M., Wang K., Guo Y.N., Zhang J., Xu Y., Zou J., Zhang X.B., CFD study on Taconis thermoacoustic oscillation with cryogenic hydrogen as working gas. Cryogenics, 2016, 75: 38–46.
[35] Alimohammadi S., Fanning E., Persoons T., Murray D.B., Characterization of flow vectoring phenomenon in adjacent synthetic jets using CFD and PIV. Computers & Fluids, 2016, 140: 232–246.
[36] Piccolo A., Numerical computation for parallel plate thermoacoustic heat exchangers in standing wave oscillatory flow. International Journal of Heat and Mass Transfer, 2011, 54(21–22): 4518–4530.
[37] Ke H., He Y., Liu Y., Cui F., Mixture working gases in thermoacoustic engines for different applications. International Journal of Thermophysics, 2012, 33(7): 1143–1163.
[38] Marx D., Blanc-Benon P., Computation of the temperature distorsion in the stack of a standing-wave thermoacoustic refrigerator. Journal of the Acoustical Society of America, 2005, 118(5): 2993–2999.
[39] Qiu L.M., Lou P., Wang K., Sun D.M., Rao J.F., Zhang X.J., Characteristics of onset and damping in a standing-wave thermoacoustic engine driven by liquid nitrogen. Chinese Science Bulletin, 2013, 58(011): 1325–1330.
[40] Chen G., Wang Y., Tang L.H., Wang K., Yu Z.B., Large eddy simulation of thermally induced oscillatory flow in a thermoacoustic engine. Applied Energy, 2020, 276: 115458.
[41] Sutherland, William, LII, The viscosity of gases and molecular force. Philosophical Magazine Series 5, 1893, 36(223): 507–531.
[42] Yu Z.B., Li Q., Chen X., Guo F.Z., Xie X.J., Experimental investigation on a thermoacoustic engine having a looped tube and resonator. Cryogenics, 2005, 45(8): 566–571.
[43] Yu Z.B., Li Q., Chen X., Guo F.Z., Xie X.J., Wu J.H., Investigation on the oscillation modes in a thermoacoustic Stirling prime mover: mode stability and mode transition. Cryogenics, 2003, 43(12): 687–691.
[44] Al-Kayiem A., Yu Z.B., Using a side-branched volume to tune the acoustic field in a looped-tube travelling-wave thermoacoustic engine with a RC load. Energy Conversion and Management, 2017, 150: 814–821.
[45] Yu Z.B., Mao X.A., Jaworski A.J., Experimental study of heat transfer in oscillatory gas flow inside a parallel-plate channel with imposed axial temperature gradient. International Journal of Heat and Mass Transfer, 2014, 77(4): 1023–1032.