Energy utilization

Integration of LNG Regasification Process in Natural Gas-Fired Power System with Oxy-Fuel Combustion

  • LIU Rong ,
  • XIONG Yongqiang ,
  • KE Liying ,
  • LIANG Jiacheng ,
  • CHEN Dengjie ,
  • ZHAO Zhongxing ,
  • LI Yajun
Expand
  • 1. College of Chemistry and Materials Science, Ji’nan University, Guangzhou 510632, China 
    2. Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning 530004, China
    3. Key Lab of Heat Transfer Enhancement and Energy Conservation of the Ministry of Education, South China University of Technology, Guangzhou 510640, China

Online published: 2023-12-01

Supported by

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51106063), and the Dean Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (No. 2013K004).

Abstract

Oxy-fuel combustion power systems can utilize the cold energy released during the liquefied natural gas (LNG) regasification to reduce the power consumption of CO2 capture, but the specific LNG cold energy consumption of CO2 capture is still too large. To recover more CO2 with the limited LNG cold energy at a low energy cost, a novel natural gas-fired oxy-fuel power system with the cascade utilization of LNG cold energy is proposed in this work, where the LNG cold energy could be sequentially utilized in the air separation unit and the CO2 recovery process. The new system is evaluated with the Aspen Plus software. The results show that the net electrical efficiency and the specific primary energy consumption for CO2 avoided (SPECCA) of the new system are comparable to those of the chemical looping combustion cycle, and superior to those of the conventional O2/CO2 cycles. Moreover, the specific LNG needed for CO2 avoided (SLNCC) of the new system is more than 67.2% lower than the existing oxy-fuel power systems utilizing the LNG cold energy. Furthermore, it is found that the O2 purity of 97.0 mol% and the CO2 capture ratio of 97.0% are optimal conditions, because the SPECCA, the specific exergy consumption for CO2 avoided (SECCA) and the SLNCC are at the minimum of 1.87 GJLHV·tCO2−1, 2.60 GJ·tCO2−1 and 1.88 tLNG·tCO2−1, respectively. Meanwhile, the net electrical efficiency and the exergy efficiency of the new system reach 51.51% and 49.23%, respectively.

Cite this article

LIU Rong , XIONG Yongqiang , KE Liying , LIANG Jiacheng , CHEN Dengjie , ZHAO Zhongxing , LI Yajun . Integration of LNG Regasification Process in Natural Gas-Fired Power System with Oxy-Fuel Combustion[J]. Journal of Thermal Science, 2022 , 31(5) : 1351 -1366 . DOI: 10.1007/s11630-020-1326-y

References

[1] International Energy Agency (IEA). United Nations Industrial Development Organization (UNIDO). Technology roadmap: carbon capture and storage. IEA Publication, 2011. 
[2] Stanger R., Wall T., Spörl R., Paneru M., Grathwohl S., Weidmann M., Scheffknecht G., McDonald D., Myöhänen K., Ritvanen J., Rahiala S., Hyppänen T., Mletzko J., Kather A., Santos S., Oxyfuel combustion for CO2 capture in power plants. International Journal of Greenhouse Gas Control, 2015, 40: 55‒125.
[3] Gibbins J., Chalmers H., Carbon capture and storage. Energy Policy, 2008, 36: 4317‒4322. 
[4] Kvamsdal H., Jordal K., Bolland O., A quantitative comparison of gas turbine cycles with CO2 capture. Energy, 2007, 32: 10–24. 
[5] Kanbura B.B., Xiang L., Dubeya S., Chooa F.H., Duan F., Cold utilization systems of LNG: A review. Renewable and Sustainable Energy Reviews, 2017, 79: 1171‒1188.
[6] He T., Chong Z.R., Zheng J., Ju Y., Linga P., LNG cold energy utilization: Prospects and challenges. Energy, 2019, 170: 557‒568.
[7] Mehrpooya M., Sharifzadeh M.M.M., Katoolia M.H., Thermodynamic analysis of integrated LNG regasification process configurations. Progress in Energy and Combustion Science, 2018, 69: 1‒27.
[8] Moghimi M., Rashidzadeh S., Hosseinalipour S.M., Khosravian M., Exergy and energy analysis of a novel power cycle utilizing the cold energy of liquefied natural gas. Heat and Mass Transfer, 2019, 55: 3327‒3342.
[9] Deng S., Jin H., Cai R., Lin R., Novel cogeneration power system with liquefied natural gas (LNG) cryogenic energy utilization. Energy, 2004, 29: 497‒512. 
[10] Liu M., Lior N., Zhang N., Han W., Thermoeconomic analysis of a novel zero-CO2-emission high-efficiency power cycle using LNG coldness. Energy Conversion and Management, 2009, 50: 2768‒2781. 
[11] Zhang N., Lior N., Liu M., Han W., COOLCEP (cool clean efficient power): A novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization. Energy, 2010, 35: 1200‒1210. 
[12] Zhang N., Lior N., A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization. Energy, 2006, 31: 1666‒1679. 
[13] Gómez M.R., Gómez J.R., López-González L.M., López- Ochoa L.M., Thermodynamic analysis of a novel power plant with LNG (liquefied natural gas) cold exergy exploitation and CO2 capture. Energy, 2016, 105: 32‒44.
[14] Mehrpooya M., Sharifzadeh M.M.M., Rosen S.A., Energy and exergy analyses of a novel power cycle using the cold of LNG (liquefied natural gas) and low-temperature solar energy. Energy, 2016, 95: 324‒345. 
[15] Mehrpooya M., Sharifzadeh M.M.M., A novel integration of oxy-fuel cycle, high temperature solar cycle and LNG cold recovery-energy and exergy analysis. Applied Thermal Engineering, 2017, 114: 1090‒1104.
[16] Zheng J., Li Z., Li G., Si B., Simulation of a novel single-column cryogenic air separation process using LNG cold energy. Physics Procedia, 2015, 67: 116‒122.
[17] Mehrpooya M., Sharifzadeh M.M.M., Rosen M.A., Optimum design and exergy analysis of a novel cryogenic air separation process with LNG (liquefied natural gas) cold energy utilization. Energy, 2015, 90: 2047‒2069. 
[18] Kim D., Giametta R.E.H., Gundersen T., Optimal use of liquefied natural gas (LNG) cold energy in air separation units. Industrial & Engineering Chemistry Research, 2018, 57: 5914‒5923. 
[19] Xu W., Duan J., Mao W., Process study and exergy analysis of a novel air separation process cooled by LNG cold energy. Journal of Thermal Science, 2014, 23: 77‒84. 
[20] Tesch S., Morosuk T., Tsatsaronis G., Advanced exergy analysis applied to the process of regasification of LNG (liquefied natural gas) integrated into an air separation process. Energy, 2016, 117: 550‒561. 
[21] Tesch S., Morosuk T., Tsatsaronis G., Exergetic and economic evaluation of safety-related concepts for the regasification of LNG integrated into air separation processes. Energy, 2017, 141: 2458‒2469.
[22] Chen S., Xu J., Dong X., Zhang H., Gao Q., Tan C., Pinch point analysis of heat exchange for liquid nature gas (LNG) cryogenic energy using in air separation unit. International Journal of Refrigeration, 2018, 90: 264‒276.
[23] Chen S., Xu J., Dong X., Zhang H., Gao Q., Tan C., Thermodynamic evaluation of the novel distillation column of the air separation unit with integration of liquefied natural gas (LNG) regasification. Energy, 2019, 171: 341‒359.
[24] Wilkinson M.B., Boden J.C., Panesar R.S., Allam R.J., CO2 capture via oxyfuel firing: Optimisation of a retrofit design concept for a refinery power station boiler. In: First national conference on carbon sequestration, May 2001, Washington, DC. 
[25] Xiang Y., Cai L., Guan Y., Liu W., Han Y., Liang Y., Study on the configuration of bottom cycle in natural gas combined cycle power plants integrated with oxy-fuel combustion. Applied Energy, 2018, 212: 465‒477. 
[26] Amann J.-M., Kanniche M., Bouallou C., Natural gas combined cycle power plant modified into an O2/CO2 cycle for CO2 capture. Energy Conversion and Management, 2009, 50: 510‒521.
[27] European Industrial Gases Association (EIGA). Indirect CO2 emissions compensation: Benchmark proposal for Air Separation Plants, EIGA position paper #33. December 2010.
[28] Manzolini G., Macchi E., Binotti M., Gazzani M., Integration of SEWGS for carbon capture in natural gas combined cycle. Part A: Thermodynamic performances. International Journal of Greenhouse Gas Control, 2011, 5: 200‒213. 
[29] Vinson D.R., Air separation control technology. Computers and Chemical Engineering, 2006, 30: 1436‒1446. 
[30] Fu C., Gundersen T., Using exergy analysis to reduce power consumption in air separation units for oxy-combustion processes. Energy, 2012, 44: 60‒68. 
[31] Higginbotham P., White V., Fogash K., Guvelioglu G., Oxygen supply for oxyfuel CO2 capture. International Journal of Greenhouse Gas Control, 2011, 5S: S194‒203. 
[32] Xiong Y., Luo P., Hua B., Energy consumption analysis of air separation process for oxy-fuel combustion system. Advanced Materials Reseach, 2014, 1033‒1034: 146‒150. 
[33] Bolland O., Mathieu P., Comparison of two CO2 removal options in combined cycle power plants. Energy Conversion and Management, 1998, 39: 1653‒1663. 
[34] Dillon D.J., Panesar R.S., Wall R.A., Allam R.J., White V., Gibbins J., Haines M.R., Oxy-combustion processes for CO2 capture from advanced supercritical PF and NGCC power plant. In: Proceedings of the seventh international conference on greenhouse gas control technologies - GHGT7, September 2004. Vancouver, Canada. 
DOI: 10.1016/B978-008044704-9/50022-7. 
[35] Li H., Yan J., Anheden M., Impurity impacts on the purification process in oxy-fuel combustion based CO2 capture and storage system. Applied Energy, 2009, 86: 202‒213.
Outlines

/