[1] https://www.iea.org/reports/renewable-power 2021. https://www.iea.org/reports/renewable-power (accessed October 29, 2021).
[2] Hu S., Liu C., Ding J., Xu Y., Chen H., Zhou X., Thermo-economic modeling and evaluation of physical energy storage in power system. Journal of Thermal Science, 2021, 30: 1–14. DOI: 10.1007/s11630-021-1417-4.
[3] Ould Amrouche S., Rekioua D., Rekioua T., Bacha S., Overview of energy storage in renewable energy systems. International Journal of Hydrogen Energy, 2016, 41: 20914–20927. DOI: 10.1016/j.ijhydene.2016.06.243.
[4] Koohi-Fayegh S., Rosen M.A., A review of energy storage types, applications and recent developments. Journal of Energy Storage, 2020, 27: 101047. DOI: 10.1016/j.est.2019.101047.
[5] IEA Report. Technology roadmap: Energy storage. 2014.
[6] Budt M., Wolf D., Span R., Yan J., A review on compressed air energy storage: Basic principles, past milestones and recent developments. Applied Energy, 2016, 170: 250–268. DOI: 10.1016/j.apenergy.2016.02.108.
[7] Das C.K., Bass O., Kothapalli G., Mahmoud T.S., Habibi D., Overview of energy storage systems in distribution networks: Placement, sizing, operation, and power quality. Renewable Sustainable Energy Review, 2018, 91: 1205–1230. DOI: 10.1016/j.rser.2018.03.068.
[8] Crotogino F., Mohmeyer K.U., Scharf R., Huntorf CAES: More than 20 years of successful operation. Solution Mining Research Institute Spring Meeting, Orlando, 23–25 April, 2001, pp. 351–357.
[9] De Biasi V., 110 MW McIntosh CAES plant over 90% availability and 95% reliability. Gas Turbine World, 1998, 28: 26–28.
[10] Song J., Peng X., Fang X., Han Y., Deng Z., Xu G., et al., Thermodynamic analysis and algorithm optimisation of a multi-stage compression adiabatic compressed air energy storage system. Thermal Science and Engeneering Progess, 2020, 19: 100598.
DOI: 10.1016/j.tsep.2020.100598.
[11] Li Y., Miao S., Zhang S., Yin B., Luo X., Dooner M., et al., A reserve capacity model of AA-CAES for power system optimal joint energy and reserve scheduling. International Journal of Electrical Power & Energy Systems, 2019, 104: 279–290.
DOI: 10.1016/j.ijepes.2018.07.012.
[12] Tong S., Cheng Z., Cong F., Tong Z., Zhang Y., Developing a grid-connected power optimization strategy for the integration of wind power with low-temperature adiabatic compressed air energy storage. Renewable Energy, 2018, 125: 73–86.
DOI: 10.1016/j.renene.2018.02.067.
[13] Hartmann N., Vöhringer O., Kruck C., Eltrop L., Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations. Appied Energy, 2012, 93: 541–548. DOI: 10.1016/j.apenergy.2011.12.007.
[14] Wang S., Zhang X., Yang L., Zhou Y., Wang J., Experimental study of compressed air energy storage system with thermal energy storage. Energy, 2016, 103: 182–191. DOI: 10.1016/j.energy.2016.02.125.
[15] Liu J., Zhang X., Xu Y., Chen Z., Chen H., Tan C., Economic analysis of using above ground gas storage devices for compressed air energy storage system. Journal of Thermal Science, 2014, 23: 535–543. DOI: 10.1007/s11630-014-0738-y.
[16] Tola V., Meloni V., Spadaccini F., Cau G., Performance assessment of Adiabatic Compressed Air Energy Storage (A-CAES) power plants integrated with packed-bed thermocline storage systems. Energy Conversion and Management, 2017, 151: 343–356.
DOI: 10.1016/j.enconman.2017.08.051.
[17] Raju M., Kumar Khaitan S., Modeling and simulation of compressed air storage in caverns: A case study of the Huntorf plant. Applied Energy, 2012, 89: 474–481. DOI: 10.1016/j.apenergy.2011.08.019.
[18] Zhou Q., Du D., Lu C., He Q., Liu W., A review of thermal energy storage in compressed air energy storage system. Energy, 2019, 188: 115993. DOI: 10.1016/j.energy.2019.115993.
[19] Zhao P., Dai Y., Wang J., Design and thermodynamic analysis of a hybrid energy storage system based on A-CAES (adiabatic compressed air energy storage) and FESS (flywheel energy storage system) for wind power application. Energy, 2014, 70: 674–684.
DOI: 10.1016/j.energy.2014.04.055.
[20] Castellani B., Presciutti A., Filipponi M., Nicolini A., Rossi F., Experimental investigation on the effect of phase change materials on compressed air expansion in CAES plants. Sustainability, 2015, 7: 9773–9786. DOI: 10.3390/su7089773.
[21] Barbour E., Mignard D., Ding Y., Li Y., Adiabatic compressed air energy storage with packed bed thermal energy storage. Applied Energy, 2015, 155: 804–815. DOI: 10.1016/j.apenergy.2015.06.019.
[22] Alva G., Lin Y., Fang G., An overview of thermal energy storage systems. Energy, 2018, 144: 341–378. DOI: 10.1016/j.energy.2017.12.037.
[23] Wolf D., Budt M., LTA-CAES - A low-temperature approach to adiabatic compressed air energy storage. Applied Energy, 2014, 125: 158–164. DOI: 10.1016/j.apenergy.2014.03.013.
[24] Luo X., Wang J., Krupke C., Wang Y., Sheng Y., Li J., et al., Modelling study, efficiency analysis and optimisation of large-scale adiabatic compressed air energy storage systems with low-temperature thermal storage. Applied Energy, 2016, 162: 589–600. DOI: 10.1016/j.apenergy.2015.10.091.
[25] Guo C., Xu Y., Guo H., Zhang X., Lin X., Wang L., et al., Comprehensive exergy analysis of the dynamic process of compressed air energy storage system with low-temperature thermal energy storage. Applied Thermal Engineering, 2019, 147: 684–693. DOI: 10.1016/j.applthermaleng.2018.10.115.
[26] Guo H., Xu Y., Guo C., Zhang Y., Hou H., Chen H., Off-design performance of CAES systems with low-temperature thermal storage under optimized operation strategy. Journal of Energy Storage, 2019, 24: 100787. DOI: 10.1016/j.est.2019.100787.
[27] Brown R.N., Compressors: Selection and Sizing. 3rd Edition, January 2005. Elsevier Science & Technology, Ansterdam.
[28] Guo H., Xu Y., Guo C., Chen H., Wang Y., Yang Z., et al., Thermodynamic analysis of packed bed thermal energy storage system. Journal of Thermal Science, 2020, 29: 445–456. DOI: 10.1007/s11630-019-1115-7.
[29] Cascetta M., Cau G., Puddu P., Serra F., Numerical investigation of a packed bed thermal energy storage system with different heat transfer fluids. Energy Procedia, 2014, 45: 598–607. DOI: 10.1016/j.egypro.2014.01.064.
[30] Schumann T.E.W., Heat transfer: a liquid flowing porous prism. Journal of Franklin Institute, 1929, 208: 405–416.
[31] Cascetta M., Serra F., Cau G., Puddu P., Comparison between experimental and numerical results of a packed-bed thermal energy storage system in continuous operation. Energy Procedia, 2018, 148: 234–241.
[32] Bruch A., Molina S., Esence T., Fourmigué J.F., Couturier R., Experimental investigation of cycling behaviour of pilot-scale thermal oil packed-bed thermal storage system. Renewable Energy, 2017, 103: 277–285. DOI: 10.1016/j.renene.2016.11.029.
[33] He W., Wang J., Optimal selection of air expansion machine in Compressed Air Energy Storage: A review. Renewable Sustainable Energy Review, 2018, 87: 77–95. DOI: 10.1016/j.rser.2018.01.013.