[1] Morshed A., Paul T.C., Khan J.A., Atomistic simulation of temperature dependent thermal transport across nanoconfined liquid. Physica E: Low-dimensional Systems and Nanostructures, 2013, 47: 246–251.
[2] Liu Q.X., Jiang P.X., Xiang H., Molecular dynamics simulation of thermal conductivity of an argon liquid layer confined in nanospace. Molecular Simulation, 2010, 36(13): 1080–1085.
[3] Lederle C., Sattig M., Vogel M., Effects of partial crystallization on the dynamics of water in mesoporous silica. The Journal of Physical Chemistry C, 2018, 122(27): 15427–15434.
[4] Erko M., Findenegg G.H., Cade N., Michette A.G., Paris O., Confinement-induced structural changes of water studied by Raman scattering. Physical Review B, 2011, 84(10): 104205.
[5] Naguib N., Ye H., Gogotsi Y., Yazicioglu A.G., Megaridis C.M., Yoshimura M., Observation of water confined in nanometer channels of closed carbon nanotubes. Nano Letters, 2004, 4(11): 2237–2243.
[6] Gad-el-Hak M., The fluid mechanics of microdevices—the Freeman scholar lecture. 1999.
DOI: 10.1115/1.2822013.
[7] Tombari E., Ferrari C., Salvetti G., Johari G.P., Dynamic and apparent specific heats during transformation of water in partly filled nanopores during slow cooling to 110 K and heating. Thermochimica Acta, 2009, 492(1–2): 37–44.
[8] Barati Farimani A., Aluru N.R., Spatial diffusion of water in carbon nanotubes: from fickian to ballistic motion. The Journal of Physical Chemistry B, 2011, 115(42): 12145– 12149.
[9] Titantah J.T., Karttunen M., Hydrophobicity: effect of density and order on water's rotational slowing down. Soft Matter, 2015, 11(40): 7977–7985.
[10] Hwang C.C., Hsieh J.Y., Chang K.H., Liao J.J., A study of rupture process of thin liquid films by a molecular dynamics simulation. Physica A: Statistical Mechanics and its Applications, 1998, 256(3–4): 333–341.
[11] Xue L., Keblinski P., Phillpot S.R., Choi S.S., Eastman J.A., Effect of liquid layering at the liquid-solid interface on thermal transport. International Journal of Heat and Mass Transfer, 2004, 47(19–20): 4277–4284.
[12] Liu Y., Wang Q., Zhang L., Dynamics and density profile of water in nanotubes as one-dimensional fluid. Langmuir, 2005, 21(25): 12025–12030.
[13] Liu Y., Wang Q., Transport behavior of water confined in carbon nanotubes. Physical Review B, 2005, 72(8): 085420.
[14] Thomas J.A., Iutzi R.M., McGaughey A.J.H., Thermal conductivity and phonon transport in empty and water-filled carbon nanotubes. Physical Review B, 2010, 81(4): 045413.
[15] Zhao Z., Sun C., Zhou R., Thermal conductivity of confined-water in graphene nanochannels. International Journal of Heat and Mass Transfer, 2020, 152: 119502.
[16] Shayeganfar F., Beheshtian J., Interfacial properties of water/heavy water layer encapsulate in bilayer graphene nanochannel and nanocapacitor. Journal of Materials Science: Materials in Electronics, 2019, 30(13): 11964– 11975.
[17] Chen J., Walther J.H., Koumoutsakos P., Strain engineering of Kapitza resistance in few-layer graphene. Nano Letters, 2014, 14: 819–825.
[18] Hu S., Zhang Z., Jiang P., Chen J., Volz S., Nomura M., Li B., Randomness-induced phonon localization in graphene heat conduction. The Journal of Physical Chemistry Letters, 2018, 9: 3959–3968.
[19] Rajabpour A., Volz S., Thermal boundary resistance from mode energy relaxation times: Case study of argon-like crystals by molecular dynamics. Journal of Applied Physics, 2010, 108: 094324.
[20] Zhang Z., Xie Y., Peng Q., Chen Y., Geometry, stability and thermal transport of hydrogenated graphene nanoquilts. Solid State Communications, 2015, 213: 31–36.
[21] Feldman J.L., Kluge M.D., Allen P.B., Wooten F., Thermal conductivity and localization in glasses: Numerical study of a model of amorphous silicon. Physical Review B, 1993, 48: 12589.
[22] Tombari E., Salvetti G., Ferrari C., Johari G.P., Position-dependent energy of molecules in nano-confined water. Physical Chemistry Chemical Physics, 2005, 7(19): 3407–3411.
[23] Frank M., Drikakis D., Solid-like heat transfer in confined liquids. Microfluidics and Nanofluidics, 2017, 21(9): 148.
[24] Plimpton S., Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19.
[25] Stukowski A., Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool. Modelling and Simulation in Materials Science and Engineering, 2009, 18(1): 015012.
[26] Lim M.C.G., Zhong Z.W., Molecular dynamics analyses of an Al(110) surface. Physica A: Statistical Mechanics and its Applications, 2009, 388(19): 4083–4090.
[27] Hockney R.W., Eastwood J.W., Particle-Particle- Particle-Mesh (P3M) Algorithms. Computer Simulation Using Particles, 1988: 267–304.
[28] In't Veld P.J., Ismail A.E., Grest G.S., Application of Ewald summations to long-range dispersion forces. The Journal of chemical Physics, 2007, 127(14): 144711.
[29] Evans D.J., Holian B.L., The Nose-Hoover thermostat. The Journal of Chemical Physics, 1985, 83(8): 4069– 4074.
[30] Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L., Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 1983, 79(2): 926–935.
[31] Wirnsberger P., Frenkel D., Dellago C., An enhanced version of the heat exchange algorithm with excellent energy conservation properties. The Journal of Chemical Physics, 2015, 143(12): 124104.
[32] Yaws C.L., Chemical properties handbook: physical, thermodynamic, environmental, transport, safety and health related properties for organic and inorganic chemicals, McGraw-Hill Education, 1999.
[33] Matsubara H., Kikugawa G., Bessho T., Yamashita S., Ohara T., Effects of molecular structure on microscopic heat transport in chain polymer liquids. The Journal of Chemical Physics, 2015, 142(16): 164509.
[34] Ohara T., Contribution of intermolecular energy transfer to heat conduction in a simple liquid. The Journal of Chemical Physics, 1999, 111(21): 9667–9672.
[35] Martinez-Gonzalez J.A., English N.J., Gowen A.A., Structure and stretching dynamics of water molecules around an amphiphilic amide from FPMD simulations: A case study of N, N-dimethylformamide. Journal of Molecular Liquids, 2020, 302: 112524.
[36] Gonzalez-Valle C.U., Ramos-Alvarado B., Interfacial liquid structuring at SiC-Water interfaces and its effects on heat transfer. 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2018, pp. 86–91.
DOI: 10.1109/ITHERM.2018.8419565.
[37] Abraham F.F., The interfacial density profile of a Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: A Monte Carlo simulation. The Journal of Chemical Physics, 1978, 68(8): 3713– 3716.
[38] Wang G.J., Hadjiconstantinou N.G., Molecular mechanics and structure of the fluid-solid interface in simple fluids. Physical Review Fluids, 2017, 2(9): 094201.
[39] Steinhardt P., Nelson D., Ronchetti M., Bond- orientational order in liquids and glasses. Physical Review B, 1983, 28(2): 784.
[40] Lechner W., Dellago C., Accurate determination of crystal structures based on averaged local bond order parameters. The Journal of chemical physics, 2008, 129(11): 114707.
[41] Allen M.P., Tildesley D.J., Computer simulation of liquids. Oxford University Press, New York, 2017.
[42] Kendall M., Stuart A., Ord J.K., Kendall’s advanced theory of statistics. Oxford University Press, New York, 1987.
[43] Zhang T., Xu B., Chen Z., Effect of graphite layers on the conformation and thermal conductivity of n-octadecane: A molecular dynamics study. Journal of Thermal Science, 2021, 30(5): 1789–1802.
[44] Wang G.J., Hadjiconstantinou N.G., Layered fluid structure and anomalous diffusion under nanoconfinement. Langmuir, 2018, 34(23): 6976–6982.
[45] Mittal J., Errington J.R., Truskett T.M., Relationships between self-diffusivity, packing fraction, and excess entropy in simple bulk and confined fluids. The Journal of Physical Chemistry B, 2007, 111(34): 10054–10063.
[46] MacDonald J.R., Review of some experimental and analytical equations of state. Reviews of Modern Physics, 1969, 41(2): 316.
[47] Elton D.C., Fernández-Serra M., The hydrogen-bond network of water supports propagating optical phonon-like modes. Nature Communications, 2016, 7(1): 1–8.
[48] Shao C., Rong Q., Li N., Bao H., Understanding the mechanism of diffuse phonon scattering at disordered surfaces by atomistic wave-packet investigation. Physical Review B, 2018, 98(15): 155418.
[49] Tas G., Maris H.J., Picosecond ultrasonic study of phonon reflection from solid-liquid interfaces. Physical Review B, 1997, 55(3): 1852.
[50] Shibahara M., Takeuchi K., A molecular dynamics study on the effects of nanostructural clearances on thermal resistance at a Lennard-Jones liquid-solid interface. Journal of Thermal Science and Technology, 2011, 6(1): 9–20.
[51] Barisik M., Beskok A., Boundary treatment effects on molecular dynamics simulations of interfacial thermal resistance. Journal of Computational Physics, 2012, 231(23): 7881–7892.
[52] Ramos-Alvarado B., Kumar S., Peterson G.P., Solid-liquid thermal transport and its relationship with wettability and the interfacial liquid structure. The Journal of Physical Chemistry Letters, 2016, 7(17): 3497–3501.