Non-Isothermal Dissolutive Wetting of Al-Ni and Cu-Ni Alloy Nanodroplets on a Cu(100) Substrate

  • WANG Shaoyu ,
  • WANG Zijie ,
  • WANG Shuolin ,
  • YANG Yanru ,
  • HUANG Congliang ,
  • WANG Xiaodong
Expand
  • 1. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
    2. Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China
    3. School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China

Online published: 2023-12-01

Supported by

This study was partially supported by the State Key Program of National Natural Science of China (No. 51936004) and Science Fund for Creative Research Groups of the National Natural Science Foundation of China (No. 51821004).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

The kinetics of Al-Ni and Cu-Ni nanodroplets spreading over a Cu substrate in the presence of a temperature difference between them is studied via molecular dynamics simulations. The simulations show that significant dissolution reactions occur for the two systems and there is no precursor film generated during spreading. The spreading rate significantly increases when nanodroplets contain less Ni atoms in the Al-Ni/Cu wetting systems. However, a different trend is observed in the Cu-Ni/Cu wetting systems. The spreading rate remains unchanged regardless of the ratio of Cu to Ni atoms owing to the fact that Cu and Ni have almost the same lattice constants. The simulations also demonstrate that, because of the temperature gradient between the nanodroplet and substrate, local solidification takes place in the later spreading stage, which significantly hinders spreading. Due to the mismatch of lattice constants between Al and the Cu atoms in the Al-Ni/Cu wetting systems, hexagonal closest packed (hcp), body centered cubic (bcc), and face centered cubic (fcc) arrangements of atoms are observed when the Al-Ni nanodroplets solidify completely, whereas there is only a fcc arrangement in the Cu-Ni/Cu wetting systems.

Cite this article

WANG Shaoyu , WANG Zijie , WANG Shuolin , YANG Yanru , HUANG Congliang , WANG Xiaodong . Non-Isothermal Dissolutive Wetting of Al-Ni and Cu-Ni Alloy Nanodroplets on a Cu(100) Substrate[J]. Journal of Thermal Science, 2022 , 31(4) : 1135 -1144 . DOI: 10.1007/s11630-022-1624-7

References

[1] Bonn D., Eggers J., Indekeu J., Meunier J., Rolley E., Wetting and spreading. Reviews of Modern Physics, 2009, 81(2): 739–805.
[2] Sun Y., Webb III E.B., The atomistic mechanism of high temperature contact line advancement: results from molecular dynamics simulations. Journal of Physics: Condensed Matter, 2009, 21: 46413.
[3] Kim C., Kang S.C., Baldwin D.F., Experimental evaluation of wetting dynamics models for Sn63Pb37 and SnAg4.0Cu0.5 solder materials. Journal of Applied Physics, 2008, 104: 033537.
[4] Yin L., Chauhan A., Singler T.J., Reactive wetting in metal/metal systems: dissolutive versus compound- forming systems. Materials Science and Engineering A, 2008, 495: 80–89.
[5] Su S., Yin L., Sun Y., Murray B.T., Singler T.J., Modeling dissolution and spreading of Bi-Sn alloy drops on a Bi substrate. Acta Materialia, 2009, 57: 3110–3122. 
[6] Blake T.D., Haynes J.M., Kinetics of liquid-liquid displacement. Journal of Colloid and Interface Science, 1969, 30(3): 421–423.
[7] Tanner L.H., The spreading of silicone oil drops on horizontal surfaces. Journal of Physics D: Applied Physics, 1979, 12: 1473–1484.
[8] Benhassine M., Saiz E., Tomsia A.P., De Coninck J., Nonreactive spreading at high-temperature revisited for metal systems via molecular dynamics. Langmuir, 2009, 25(19): 11450–11458.
[9] Benhassine M., Saiz E., Tomsia A.P., De Coninck J., Role of substrate commensurability on non-reactive wetting kinetics of liquid metals. Acta Materialia, 2010, 58: 2068–2078.
[10] Wang S.Y., Wang S.L., Yang Y.R., Wang X.D., Lee D.J., High-temperature reactive wetting systems: Role of lattice constant. Chemical Engineering Science, 2019, 209: 115206.
[11] Sharps P.R., Tomsia A.P., Pask J.A., Wetting and spreading in the Cu-Ag system. Acta Metallurgica, 1981, 29: 855–865.
[12] Yin L., Murray B.T., Singler T.J., Dissolutive wetting in the Bi-Sn system. Acta Materialia, 2006, 54: 3561–3574.
[13] Landry K., Eustathopoulos N., Dynamics of wetting in reactive metal/ceramic systems: linear spreading. Acta Materialia, 1996, 44(10): 3923–3932.
[14] Kozlova O., Voytovych R., Protsenko P., Eustathopoulos N., Nonreactive versus dissolutive wetting of Ag-Cu alloys on Cu substrates. Journal of Materials Science, 2010, 45: 2099–2105.
[15] Protsenko P., Kozlova O., Voytovych R., Eustathopoulos N., Dissolutive wetting of Si by molten Cu. Journal of Materials Science, 2008, 43: 5669–5671.
[16] Yin L., Murray B.T., Su S., Sun Y., Efraim Y., Taitelbaum H., Singler T.J., Reactive wetting in metal-metal systems. Journal of Physics: Condensed Matter, 2009, 21(46): 464130. 
[17] Webb III E.B., Hoyt J.J., Grest G.S., Heine D.R., Atomistic simulations of reactive wetting in metallic systems. Journal of Materials Science, 2005, 40: 2281–2286.
[18] Lin L., Hui S., Lu G., Wang S.L., Wang X.D., Lee D.J., Molecular dynamics simulations on dissolutive wetting of Al-Ni alloy droplets on NiAl substrate. Journal of the Taiwan Institute of Chemical Engineers, 2017, 75: 51–58.
[19] Yost F.G., Sackinger P.A., O’Toole E.J., Energetics and kinetics of dissolutive wetting processes. Acta Materialia, 1998, 46(7): 2329–2336.
[20] Warren J.A., Boettinger W.J., Roosen A.R., Modeling reactive wetting. Acta Materialia, 1998, 46(9): 3247– 3264.
[21] Yang Q., Modeling and characterization for small-scale packaging applications. Binghamton, State University of New York, 2004.
[22] Lu G., Wang X.D., Duan Y.Y., A critical review of dynamic wetting by complex fluids: from Newtonian fluids to non-Newtonian fluids and nanofluids. Advances in Colloid and Interface Science, 2016, 236: 43–62.
[23] Heine D.R., Grest G.S., Webb III E.B., Spreading dynamics of polymer nanodroplets in cylindrical geometries. Physical Review E, 2004, 70: 011606.
[24] Mortensen A., Drevet B., Eustathopoulos N., Kinetics of diffusion-limited spreading of sessile drops in reactive wetting. Scripta Materialia, 1997, 36(6): 645–651. 
[25] Landry K., Eustathopoulos N., Dynamics of wetting in reactive metal/ceramic systems: linear spreading. Acta Materialia, 1996, 44(10): 3923–3932.
[26] Bailey G.L.J., Warkins H.C., Surface tensions in the system solid copper-molten lead. Proceedings of the Physical Society, Section B, 1950, 63: 350–358.
[27] Webb III E.B., Grest G.S., Heine D.R., Precursor film controlled wetting of Pb on Cu. Physical Review Letters, 2003, 91(23): 236102.
[28] Webb III E.B., Grest G.S., Heine D.R., Hoyt J.J., Dissolutive wetting of Ag on Cu: a molecular dynamics simulation study. Acta Materialia, 2005, 53: 3163–3177.
[29] Yost F.G., Kinetics of reactive wetting. Scripta Materialia, 2000, 42: 801–806.
[30] de Gennes P.G., Wetting: statics and dynamics. Reviews of Modern Physics, 1985, 57(3): 827–863. 
[31] Abraham D.B., Collet P., De Coninck J., Dunlop F., Langevin dynamics of spreading and wetting. Physical Review Letters, 1990, 65(2): 195–198.
[32] Yang J., Koplik J., Banavar J.R., Molecular dynamics of drop spreading on a solid surface. Physical Review Letters, 1991, 67(25): 3539–3542.
[33] Heine D.R., Grest G.S., Webb III E.B., Surface wetting of liquid nanodroplets: droplet-size effects. Physical Review Letters, 2005, 95: 107801.
[34] Qiu F., Wang M., Zhou H.G., Zheng X., Lin X., Huang W.D., Molecular dynamics simulation of the wetting behavior of Pb droplet on Ni substrate. Acta Physica Sinica, 2013, 62: 120203.
[35] Swiler T.P., The role of liquid-substrate interactions on wetting in metallic embedded atom method systems. Acta Materialia, 2000, 48: 4775–4782.
[36] Lin Q.L., Zhong W.Q., Li F.X., Yu X.Y., Reactive wetting of tin/steel and tin/aluminum at 350–450°C. Journal of Alloys and Compounds, 2017, 716: 73–80.
[37] Webb III E.B., Grest G.S., Molecular dynamics simulations of reactive wetting. Scripta Materialia, 2002, 47: 393–398. 
[38] Kubo A., Makino T., Sugiyama D., Tanaka S.I., Molecular dynamics analysis of the wetting front structure in metal/metal systems. Journal of Materials Science, 2005, 40: 2395–2400.
[39] Hsieh J.Y., Chen J.L., Chen C., Lin H.C., Yang S.S., Reactive wetting behaviors of Sn/Cu systems: a molecular dynamics study. Nano-Micro Letts, 2010, 2(2): 60–67.
[40] Webb III E.B., Hoyt J.J., Grest G.S., High temperature wetting: insights from atomistic simulations. Current Opinion in Solid State and Materials Science, 2005, 9: 174–180.
[41] Li J.G., Kinetics of wetting and spreading of Cu-Ti alloys on alumina and glassy carbon substrates. Journal of Materials Science Letters, 1992, 11: 1551–1554.
[42] Zhu C., Liu T.Y., Qian F., Chen W., Chandrasekaran S., Yao B., Song Y., Duoss E.B., Kuntz J.D., Spadaccini C.M., Worsley M.A., Li Y., 3D printed functional nanomaterials for electrochemical energy storage. Nano Today, 2017, 15: 107–120.
[43] Plimpton S., Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117: 1–19.
[44] Foiles S.M., Baskes M.I., Daw M.S., Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 1986, 33(12): 7983–7991.
[45] Honeycutt J.D., Andersen H.C., Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. The Journal of Physical Chemistry, 1987, 91: 4950–4963.
[46] Daniel F., Hannes J., Systematic analysis of local atomic structure combined with 3D computer graphics. Computational Materials Science, 1994, 2: 279–286.
Outlines

/