[1] Rowe D.M., CRC handbook of thermoelectrics. CRC press, 2018.
[2] Lu K., Thermoelectric energy conversion and materials, John Wiley & Sons, Inc, 2014.
[3] Shen L., Xiao F., Chen H., Wang S., Investigation of a novel thermoelectric radiant air-conditioning system. Energy and Buildings, 2013, 59: 123–132.
[4] Gong T., Gao L., Wu Y., Zhang L., Yin S., Li J., Ming T., Numerical simulation on a compact thermoelectric cooler for the optimized design. Applied Thermal Engineering, 2019, 146: 815–825.
[5] Semenyuk V., Thermoelectric micro modules for spot cooling of high density heat sources. Proceedings ICT2001 20 International Conference on Thermoelectrics (Cat. No. 01TH8589), IEEE, 2001.
[6] Dresselhaus M., Chen G., Ren Z., McEnaney K., Dresselhaus G., Fleurial J.P., The promise of nanocomposite thermoelectric materials. MRS Online Proceedings Library (OPL), 2009, pp. 1166.
[7] Poudel B., Hao Q., Ma Y., Lan Y., Minnich A., Yu B., Ren Z., High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science, 2008, 320(5876): 634–638.
[8] Harman T.C., Walsh M.P., Laforge B.E., Turner G.W., Nanostructured thermoelectric materials. Journal of Electronic Materials, 2005, 34(5): 19–22.
[9] Hicks L.D., Dresselhaus M.S., The effect of quantum well structures on the thermoelectric figure of nerit. MRS Online Proceedings Library (OPL), 1992, pp. 281.
[10] Alam H., Ramakrishna S., A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy, 2013, 2(2): 190–212.
[11] Bell L.E., Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science, 2008, 321(5895): 1457–1461.
[12] Enescu D., Virjoghe E.O., A review on thermoelectric cooling parameters and performance. Renewable and Sustainable Energy Reviews, 2014, 38: 903–916.
[13] Mahajan R., Chiu C.P., Chrysler G., Cooling a Microprocessor Chip. Proceedings of the IEEE, 2006, 94(8): 1476–1486.
[14] Rowe D.M., Thermoelectrics handbook: Macro to nano. CRC press, 2018.
[15] Chowdhury I., Prasher R., Lofgreen K., Chrysler G., Narasimhan S., Mahajan R., On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotechnology, 2009, 4(4): 235–238.
[16] Wang B.L., Cui Y.J., Transient interlaminar thermal stress in multi-layered thermoelectric materials. Applied Thermal Engineering, 2017, 119: 207–214.
[17] Choday S.H., Lundstrom M.S., Roy K., Prospects of thin-film thermoelectric devices for hot-spot cooling and on-chip energy harvesting. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2013, 3(12): 2059–2067.
[18] Riffat S.B., Ma X., Improving the coefficient of performance of thermoelectric cooling systems: a review. International Journal of Energy Research, 2004, 28(9): 753–768.
[19] Snyder G.J., Toberer E.S., Complex thermoelectric materials. Materials for sustainable energy: a Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, 2011, pp. 101–110.
[20] Nolas G.S., Poon J., Kanatzidis M., Recent developments in bulk thermoelectric materials. MRS bulletin, 2006, 31(3): 199–205.
[21] Li S., Toprak M.S., Soliman H.M., Zhou J., Muhammed M., Platzek D., Müller E., Fabrication of nanostructured thermoelectric bismuth telluride thick films by electrochemical deposition. Chemistry of Materials, 2006, 18(16): 3627–3633.
[22] Harman T.C., Taylor P.J., Walsh M.P., LaForge B.E., Quantum dot superlattice thermoelectric materials and devices. Science, 2002, 297(5590): 2229–2232.
[23] Wu Y., Sun K., Yu S., Zuo L., Modeling the selective laser melting-based additive manufacturing of thermoelectric powders. Additive Manufacturing, 2021, 37: 101666.
[24] Longtin J.P., Zuo L., Hwang D., Fu G., Tewolde M., Chen Y., Sampath S., Fabrication of thermoelectric devices using thermal spray: application to vehicle exhaust systems. Journal of Thermal Spray Technology, 2013, 22(5): 577–587.
[25] Semenyuk V., Cascade thermoelectric micro modules for spot cooling high power electronic components. IEEE, 2002, pp. 531–534.
[26] Chen G., Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons. Oxford university press, 2005.
[27] Yang R., Chen G., Kumar A.R., Snyder G.J., Fleurial J.P., Transient cooling of thermoelectric coolers and its applications for microdevices. Energy Conversion and Management, 2005, 46(9–10): 1407–1421.
[28] Sullivan O., Gupta M.P., Mukhopadhyay S., Kumar S., Thermoelectric coolers for thermal gradient management on chip ASME. International Mechanical Engineering Congress and Exposition, 2010, 44281: 187–195.
[29] Snyder G.J., Fleurial J.P., Caillat T., Yang R., Chen G., Supercooling of Peltier cooler using a current pulse. Journal of Applied Physics, 2002, 92(3): 1564–1569.
[30] Zhu W., Deng Y., Wang Y., Wang A., Finite element analysis of miniature thermoelectric coolers with high cooling performance and short response time. Microelectronics Journal, 2013, 44(9): 860–868.
[31] Shen L.M., Xiao F., Chen H.X., Wang S.W., Numerical and experimental analysis of transient supercooling effect of voltage pulse on thermoelectric element. International Journal of Refrigeration, 2012, 35(4): 1156–1165.
[32] Lv H., Wang X.D., Wang T.H., Meng J.H., Optimal pulse current shape for transient supercooling of thermoelectric cooler. Energy, 2015, 83: 788–796.
[33] Palko J.W., Zhang C., Wilbur J.D., Dusseault T.J., Asheghi M., Goodson K.E., Santiago J.G., Approaching the limits of two-phase boiling heat transfer: High heat flux and low superheat. Applied Physics Letters, 2015, 107(25): 253903.
[34] Sullivan O., Array of thermoelectric coolers for on-chip thermal management. Journal of Electronic Packaging, 2012, 134: 021005.
[35] Li G., Garcia F.J., Lara R.D.A., Barati V., Perez N., Soldatov I., Nielsch K., Integrated microthermoelectric coolers with rapid response time and high device reliability. Nature Electronics, 2018, 1(10): 555–561.
[36] Yang R., Chen G., Snyder G.J., Fleuriel J.P., Geometric effects on the transient cooling of thermoelectric coolers. MRS Online Proceedings Library, 2001, 691(1): 1–6.
[37] Lv H., Wang X.D., Wang T.H., Cheng C.H., Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section. Applied Energy, 2016, 164: 501–508.
[38] Manikandan S., Kaushik S.C., Transient thermal behavior of annular thermoelectric cooling system. Journal of Electronic Materials, 2017, 46(5): 2560–2569.
[39] Wu Y., Ming T., Li X., Pan T., Peng K., Luo X., Numerical simulations on the temperature gradient and thermal stress of a thermoelectric power generator. Energy Conversion and Management, 2014, 88: 915–927.
[40] Yin S., Tseng K.J., Zhao J., Thermal-mechanical design of sandwich SiC power module with micro-channel cooling. IEEE, 2013: 535–540.
[41] Dhannoon M., Analytical study of miniature thermoelectric device, 2016.
[42] Gong T., Gao L., Wu Y., Tan H., Qin F., Ming T., Li J., Transient thermal stress analysis of a thermoelectric cooler under pulsed thermal loading. Applied Thermal Engineering, 2019, 162: 114240.
[43] Shen L., Xiao F., Chen H., Wang S., Investigation of a novel thermoelectric radiant air-conditioning system. Energy and Buildings, 2013, 59: 123–132.
[44] Olesen B.W., Zöllner G., New European standards for design, dimensioning and testing embedded radiant heating and cooling systems. Proceedings of CLIMA, 2007.
[45] Mitrani D., Salazar J., Turó A., Garcia M.J., Chavez J.A., Transient distributed parameter electrical analogous model of TE devices. Microelectronics Journal, 2009, 40(9): 1406–1410.
[46] Liu D., Zhao F.Y., Wang H.Q., Rank E., Turbulent transport of airborne pollutants in a residential room with a novel air conditioning unit. International Journal of Refrigeration, 2012, 35(5): 1455–1472.
[47] Jiang C., Fan X.A., Rong Z., Zhang C., Li G., Feng B., Xiang Q., Elemental diffusion and service performance of Bi2Te3-based thermoelectric generation modules with flexible connection electrodes. Journal of Electronic Materials, 2017, 46(2): 1363–1370.
[48] Cao L., Deng Y., Gao H., Wang Y., Chen X., Zhu Z., Towards high refrigeration capability: the controllable structure of hierarchical Bi0.5Sb1.5Te3 flakes on a metal electrode. Physical Chemistry Chemical Physics, 2015, 17(10): 6809–6818.
[49] Kong X., Zhu W., Cao L., Peng Y., Shen S., Deng Y., Controllable electrical contact resistance between Cu and Oriented-Bi2Te3 film via interface tuning. ACS applied materials & interfaces, 2017, 9(30): 25606–25614.
[50] Silva L., Kaviany M., Micro-thermoelectric cooler: interfacial effects on thermal and electrical transport. International Journal of Heat & Mass Transfer, 2004, 47(10/11): 2417–2435.
[51] Xu G., Duan Y., Chen X., Ming T., Huang X., Influence of interface contact effects on performance of different scale thermoelectric coolers. Applied Thermal Engineering, 2020, 169: 114933.