[1] Ganatra Y., Ruiz J., Howarter J.A., et al., Experimental investigation of phase change materials for thermal management of handheld devices. International Journal of Thermal Sciences, 2018, 129: 358–364.
[2] Duan Z., Liu D., Zhang G., et al., Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Nanoscale, 2017, 9(9): 3133–3139.
[3] Behnia S., Panahinia R., Molecular thermal transistor: Dimension analysis and mechanism. Chemical Physics, 2018, 505: 40–46.
[4] Jiang S., Zhang G., Xia D., et al., A heat flux modulator from carbon nanotubes. Nanoscale, 2015, 7(32): 13759– 13764.
[5] Avanessian T., Hwang G., Thermal switch using controlled capillary transition in heterogeneous nanostructures. International Journal of Heat and Mass Transfer, 2018, 121: 127–136.
[6] Utaka Y., Hu K., Chen Z., et al., Application of simple and effective thermal switch for solid-state magnetic refrigeration at room temperature. Applied Thermal Engineering, 2019, 155: 196–205.
[7] Wang L., Li B., Thermal memory: a storage of phononic information. Physical Review Letters, 2008, 101(26): 267203.
[8] Tso C., Chao C.Y., Solid-state thermal diode with shape memory alloys. International Journal of Heat and Mass Transfer, 2016, 93: 605–611.
[9] An Z., Jia L., Ding Y., et al., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017, 26(5): 391–412.
[10] Chen Z., Wong C., Lubner S., et al., A photon thermal diode. Nature Communications, 2014, 5: 5446.
[11] Zhang P., Yuan P., Jiang X., et al., A theoretical review on interfacial thermal transport at the nanoscale. Small, 2018, 14(2): 1702769.
[12] Balachandran V., Clark S.R., Goold J., et al., Energy current rectification and mobility edges. Physical Review Letters, 2019, 123(2): 020603.
[13] Fallahi A., Guldentops G., Tao M., et al., Review on solid-solid phase change materials for thermal energy storage: Molecular structure and thermal properties. Applied Thermal Engineering, 2017, 127: 1427–1441.
[14] Wong M.Y., Traipattanakul B., Tso C.Y., et al., Experimental and theoretical study of a water-vapor chamber thermal diode. International Journal of Heat and Mass Transfer, 2019, 138: 173–183.
[15] He D., Buyukdagli S., Hu B., Origin of negative differential thermal resistance in a chain of two weakly coupled nonlinear lattices. Physical Review B Condensed Matter, 2009, 80(10): 104302.
[16] Duan Z., Liu D., Zhang G., et al., Interfacial thermal resistance and thermal rectification in carbon nanotube film-copper systems. Nanoscale, 2017, 9(9): 3133–3139.
[17] Gaddam P.R., Huxtable S.T., Ducker W.A., A liquid-state thermal diode. International Journal of Heat and Mass Transfer, 2017, 106: 741–744.
[18] Chen X.K., Liu J., Peng Z.H., et al., A wave-dominated heat transport mechanism for negative differential thermal resistance in graphene/hexagonal boron nitride heterostructures. Applied Physics Letters, 2017, 110(9): 091907.
[19] Chen X.K., Xie Z.X., Zhou W.X., et al., Thermal rectification and negative differential thermal resistance behaviors in graphene/hexagonal boron nitride heterojunction. Carbon, 2016, 100: 492–500.
[20] Wehmeyer G., Yabuki T., Monachon C., et al., Thermal diodes, regulators, and switches: Physical mechanisms and potential applications. Applied Physics Reviews, 2017, 4(4): 041304.
[21] Li B., Wang L., Casati G., Thermal diode: Rectification of heat flux. Physical Review Letters, 2004, 93(18): 184301.
[22] Chang C. W., Okawa D., Majumdar A., et al., Solid-state thermal rectifier. Science, 2006, 314(5802): 1121–1124.
[23] Tian H., Xie D., Yang Y., et al., A novel solid-state thermal rectifier based on reduced graphene oxide. Scientific Reports, 2012, 2(1): 1–7.
[24] Ma D., Wan X., Yang, N., Unexpected thermal conductivity enhancement in pillared graphene nanoribbon with isotopic resonance. Physical Review B, 2018, 98(24): 245420.
[25] Ma D., Zhang L., Enhancement of interface thermal conductance between Cr-Ni alloy and dielectric via Cu nano-interlayer. Journal of Physics: Condensed Matter, 2020, 32(42): 425001.
[26] Giri A., Hopkins P.E., Spectral analysis of thermal boundary conductance across solid/classical liquid interfaces: A molecular dynamics study. Applied Physics Letters, 2014, 105(3): 033106.
[27] Feng Y., Liang X., Heat transfer characteristics in an asymmetrical solid-liquid system by molecular dynamics simulations. International Journal of Thermophysics, 2015, 36(7): 1519–1529.
[28] Traipattanakul B., Tso C.Y., Chao C.Y., A phase-change thermal diode using electrostatic-induced coalescing- jumping droplets. International Journal of Heat and Mass Transfer, 2019, 135: 294–304.
[29] Hu M., Goicochea J.V., Michel B., et al., Thermal rectification at water/functionalized silica interfaces. Applied Physics Letters, 2009, 95(15): 151903.
[30] Murad S., Puri I.K., Thermal rectification in a fluid reservoir. Applied Physics Letters, 2012, 100(12): 121901.
[31] Murad S., Puri I.K., Dynamic rectification in a thermal diode based on fluid-solid interfaces: Contrasting behavior of soft materials and fluids. Applied Physics Letters, 2014, 104(21): 211601.
[32] Avanessian T., Hwang G., Thermal diode in gas-filled nanogap with heterogeneous surfaces using nonequilibrium molecular dynamics simulation. Journal of Applied Physics, 2016, 120(16): 165306.
[33] Avanessian T., Hwang G., Thermal diode using controlled capillary in heterogeneous nanopores. International Journal of Heat and Mass Transfer, 2018, 124: 201–209.
[34] Ming Y., Li H.M., Ding Z.J., Thermal rectification and negative differential thermal conductance in harmonic chains with nonlinear system-bath coupling. Physical Review E, 2016, 93(3): 032127.
[35] Ai B.Q., Zhong W.R., Hu B., Double negative differential thermal resistance induced by nonlinear on-site potentials. Physical Review E, 2011, 83(5): 052102.
[36] Mendonça M.S., Pereira E., Effective approach for anharmonic chains of oscillators: Analytical description of negative differential thermal resistance. Physics Letters A, 2015, 379(36): 1983–1989.
[37] Ren J., Zhu J.X., Heat diode effect and negative differential thermal conductance across nanoscale metal-dielectric interfaces. Physical Review B, 2013, 87(24): 241412.
[38] Ai B.Q., An M., Zhong W.R., Nonlinear thermal conductance in single-wall carbon nanotubes: Negative differential thermal resistance. The Journal of Chemical Physics, 2013, 138(3): 034708.
[39] Li F., Wang J., Xia G., et al., Negative differential thermal resistance through nanoscale solid-fluid-solid sandwiched structures. Nanoscale, 2019, 11(27): 13051–13057.
[40] Li F., Wang J., Xia G., Enhanced effect of negative differential thermal resistance in nanoscale confined structure with nanopatterned surfaces. The Journal of Physical Chemistry C, 2020, 124(1): 92–98.
[41] Li Z., Surface effects on friction-induced fluid heating in nanochannel flows. Physical Review E, 2009, 79(2): 026312.
[42] Liu C., Fan H.B., Zhang K., et al., Flow dependence of interfacial thermal resistance in nanochannels. The Journal of Chemical Physics, 2010, 132(9): 094703.
[43] Corry B., Designing carbon nanotube membranes for efficient water desalination. The Journal of Physical Chemistry B, 2008, 112(5): 1427–1434.
[44] Kim B.H., Beskok A., Cagin T., Molecular dynamics simulations of thermal resistance at the liquid-solid interface. Journal of Chemical Physics, 2008, 129(17): 551.
[45] Ohara T., Contribution of intermolecular energy transfer to heat conduction in a simple liquid. The Journal of Chemical Physics, 1999, 111(21): 9667–9672.
[46] Fujiwara K., Shibahara M., Detection of heat flux at single-atom scale in a liquid-solid interfacial region based on classical molecular dynamics. Applied Physics Letters, 2019, 114(1): 011601.
[47] Tien C.L., Lienhard J.H., Statistical thermodynamics. Hemisphere, Washington, 1979.
[48] Chen X., Kinetic theory of gases and its application to the studies of heat transfer and fluid flow, Tsinghua University Press, China, 1996.
[49] Kaviany M., Heat transfer physics, Cambridge University Press, Cambridge, 2014.
[50] Blömer J., Beylich A.E., Molecular dynamics simulation of energy accommodation of internal and translational degrees of freedom at gas-surface interfaces. Surface Science, 1999, 423(1): 127–133.
[51] Hwang G.S., Kaviany M., Molecular dynamics simulation of effective thermal conductivity of vapor-filled nanogap and nanocavity. Journal of Applied Physics, 2009, 106(2): 024317.