Tuning the Molecular Structure and Transport Property of [bmim][Tf2N] Using Electric Field

  • WANG Tao ,
  • LIU Xiangyang ,
  • XUE Sa ,
  • LIU Hui ,
  • HE Maogang
Expand
  • Key Laboratory of Thermal Fluid Science and Engineering of MOE, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China

Online published: 2023-12-01

Supported by


The supports which are provide by the National Natural Science Foundation of China (No. 51976167 and No. 41941018) for the completion of this work are gratefully acknowledged.

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

In this work, the effects of electric field on the microstructure and transport property of [bmim][Tf2N] were simulated by molecular dynamics method to provide regulating strategy of required ionic liquid. The simulation results showed that [bmim]+ and [Tf2N]– move slowly along the positive and negative direction of the electric field, respectively, and anions and cations are still arranging alternatively under weak electric field which has slight influence on the electrostatic force in [bmim][Tf2N]. When the electric field is strong, it has significant influence on the electrostatic force of [bmim][Tf2N], which results the aggregation of [bmim]+ and [Tf2N]– and the appearance of large hole inside [bmim][Tf2N]. In addition, with the increase of electric field intensity, the density of [bmim][Tf2N] increases, which means the free volume inside [bmim][Tf2N] become smaller. Meanwhile, the thermal conductivity and viscosity exhibit anisotropy.

Cite this article

WANG Tao , LIU Xiangyang , XUE Sa , LIU Hui , HE Maogang . Tuning the Molecular Structure and Transport Property of [bmim][Tf2N] Using Electric Field[J]. Journal of Thermal Science, 2022 , 31(4) : 1076 -1083 . DOI: 10.1007/s11630-022-1648-z

References

[1] Liu X., He M., Lv N., Xu H., Bai L., Selective absorption of CO2 from H2, O2 and N2 by 1-hexyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate. Journal of Chemical Thermodynamics, 2019, 97: 48–54.
[2] Wang T., Liu X., Chu J., Shi Y., He M., Molecular dynamics simulation of diffusion and interaction of [bmim][Tf2N] + HFO-1234yf mixture. Journal of Molecular Liquids, 2020, 312: 113390.
[3] Zhang H., Wu J., Zhang J., He J., 1-allyl-3-methylimidazolium chloride room temperature ionic liquid: a new and powerful nonderivatizing solvent for cellulose. Macromolecules, 2005, 38(20): 8272–8277.
[4] Zhou Y., Antonietti M., Preparation of highly ordered monolithic super-microporous lamellar silica with a room-temperature ionic liquid as template via the nanocasting technique. Advanced Materials, 2010, 15(17): 1452–1455.
[5] Camper D., Bara J.E., Gin D.L., Noble R.D., Room-temperature ionic liquid-amine solutions: tunable solvents for efficient and reversible capture of CO2. Industrial & Engineering Chemistry Research, 2008, 47(21): 8496–8498.
[6] Liu X., Pan P., Yang F., He M., Solubilities and diffusivities of r227ea, r236fa and r245fa in 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. Journal of Chemical Thermodynamics, 2018, 123: 158–164.
[7] Liu X., Pan P., Yang F., He M., Vapor-liquid equilibrium and diffusion coefficients of r32 + [hmim][fep], r152a + [hmim][fep] and r161 + [hmim][fep]. Journal of Molecular Liquids, 2018, 253: 28–35.
[8] Ruiz E., Ferro V.R., Palomar J., Ortega J., Rodriguez J.J., Interactions of ionic liquids and acetone: thermodynamic properties, quantum-chemical calculations, and nmr analysis. Journal of Physical Chemistry, 2013, 117(24): 7388–7398.
[9] Agílio A.H.P., Resolving dispersion and induction components for polarisable molecular simulations of ionic liquids. Journal of Physical Chemistry, 2017, 146(20): 3025. 
[10] Gurkan B., Simeon F., Hatton T.A., Quinone reduction in ionic liquids for electrochemical CO2 separation. ACS Sustainable Chemistry & Engineering, 2015, 3(7): 1394–1405.
[11] Liu X., Wang C., Lan T., He M., Zhang Y., Prediction of the thermal conductivity for guiding molecular design of liquids. ACS Sustainable Chemistry & Engineering, 2020, 8(15): 6022–6032.
[12] Cai S., Li Q., Li M., Liu C., Molecular characteristics of [bmim][BF4] ionic liquids and water mixtures on the pt surface. Journal of Molecular Liquids, 2020, 304: 112782.
[13] Kanakubo M., Harris K.R., Density of 1-butyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide and 1-hexyl-3-methylimidazolium bis (trifluoromethanesulfonyl) amide over an Extended Pressure Range up to 250 MPa. Journal of Chemical & Engineering Data, 2015, 60(5): 1408–1418.
[14] Tariq M., Carvalho P.J., Coutinho J.A. P., Marrucho I.M., José N.C., Luís P.N.R., Viscosity of (C2-C14) 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) amide ionic liquids in an extended temperature range. Fluid Phase Equilibria, 2011, 301(1): 22–32.
[15] Zhang C., Zhao W., Bi S., Rouleau C.M., Fowlkes J.D., Boldman W.L., Gu G., Li Q., Feng G., Rack P.D., Low temperature charging dynamics of ionic liquid and its gating effect on fese0.5te0.5 superconducting films. ACS Applied Materials & Interfaces, 2019, 11(19): 17979–17986.
[16] Ming C., Song L., Guang F., The influence of anion shape on the electrical double layer microstructure and capacitance of ionic liquids-based supercapacitors by molecular simulations. Molecules, 2017, 22(2): 241.
[17] Ma K., Wang X.W., Forsman J., Woodward C.E., Molecular dynamic simulations of ionic liquid’s structural variations from three to one layers inside a series of slit and cylindrical nanopores. Journal of Physical Chemistry C, 2017, 121(25): 13539–13548.
[18] Ma K., Woodward C.E., Forsman J., Classical density functional study on interfacial structure and differential capacitance of ionic liquids near charged surfaces. Journal of Physical Chemistry C, 2014, 118(29): 15825–15834.
[19] Li S., Zhu M., Feng G., The effects of dication symmetry on ionic liquid electrolytes in supercapacitors. Journal of Physics-Condensed Matter, 2016, 28(46): 464005.
[20] Van Aken K.L., Mcdonough J.K., Li S., Feng G., Chathoth S.M., Mamontov E., Fulvio P.F., Cummings P.T., Dai S., Gogotsi Y., Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes. Journal of Physics-Condensed Matter, 2014, 26(28): 284104.
[21] Li S., Katherine L.V.A., John K.M., Guang F., Yury G., Peter T.C., The electrical double layer of dicationic ionic liquids at onion-like carbon surface. Journal of Physical Chemistry C, 2014, 118(8): 3901–3909.
[22] Zhou H., Rouha M., Feng G., Lee S.S., Gogotsi Y., Nanoscale perturbations of room temperature ionic liquid structure at charged and uncharged interfaces. ACS Nano, 2012, 6(11): 9818–9827.
[23] Xie G., Luo J., Guo D., Liu S., Nanoconfined ionic liquids under electric fields. Applied Physics Letters, 2010, 96(4): 043112.
[24] Wang Y., Disordering and reordering of ionic liquids under an external electric field. Journal of Physical Chemistry 2009, 113(32): 11058–11060.
[25] Umecky T., Saito Y., Matsumoto H., Direct measurements of ionic mobility of ionic liquids using the electric field applying pulsed gradient spin-echo NMR. Journal of Physical Chemistry B, 2009, 113(25): 8466–8468.
[26] Ge S., Gan R., Effect of external static electric fields on the dynamic heterogeneity of ionic liquids. Journal of Molecular Modeling, 2018, 24(9): 240.
[27] Mahurin S.M., Mamontov E., Thompson M.W., Zhang P., Turner C.H., Cummings P.T., Relationship between pore size and reversible and irreversible immobilization of ionic liquid electrolytes in porous carbon under applied electric potential. Applied Physics Letters, 2016, 109(14): 143111.
[28] Prince B.D., Tiruppathi P., Bemish R.J., Chiu Y.H., Maginn E.J., Molecular dynamics simulations of 1-ethyl-3-methylimidazolium bis[(trifluoromethyl) sulfonyl]imide clusters and nanodrops. Journal of Physical Chemistry A, 2015, 119(2): 352.
[29] Li Q., Xiao Y., Shi X., Song S., Rapid evaporation of water on graphene/graphene-oxide: a molecular dynamics study. Nanomaterials, 2017, 7(9): 265.
[30] Li Q., Wang M., Liang Y., Lin L., Fu T., Wei P., Peng T., Molecular dynamics simulations of aggregation of copper nanoparticles with different heating rates. Physica E: Low-Dimensional Systems & Nanostructures, 2017, 90: 137–142.
[31] Song F., Niu H., Fan J., Chen Q., Wang G., Liu L., Molecular dynamics study on the coalescence and break-up behaviors of ionic droplets under DC electric field. Journal of Molecular Liquids, 2020, 312: 113195.
[32] Wang T., Liu X., He M., Zhang Y., Molecular dynamics simulation of thermophysical properties and condensation process of R1233zd (E). International Journal of Refrigeration, 2020, 112: 341–347.
[33] Liu X., Wang T., Chu J., He M., Zhang Y., Understanding lignin gasification in supercritical water using reactive molecular dynamics simulations. Renewable Energy, 2020, 161: 858–866.
[34] Zou H., Feng Y., Qiu L., Zhang X., Effect of the loading amount and arrangement of iodine chains on the interfacial thermal transport of carbon nanotubes: a molecular dynamics study. RSC Advances, 2020, 10: 44196–44204.
[35] Feng Y., Zou H., Qiu L., Zhang X., Size effect on the thermal conductivity of octadecanoic acid: a molecular dynamics study. Computational Materials Science, 2019, 158: 14–19.
[36] Wu X.P., Liu Z.P., Huang S.P., Wang W.C., Molecular dynamics simulation of room-temperature ionic liquid mixture of [bmim][BF4] and acetonitrile by a refined force field, Physical Chemistry Chemical Physics, 2005, 7: 2771–2779.
[37] José N., Canongia L., Agílio P., Karina A.H.S., Molecular force field for ionic liquids iv:  trialkylimidazolium and alkoxycarbonyl-imidazolium cations; alkylsulfonate and alkylsulfate anions. Journal of Physical Chemistry B, 2008, 112(16): 5039–5046. 
[38] Plimpton S., Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 1995, 117(1): 1–19.
[39] Nosé S., A unified formulation of the constant temperature molecular dynamics methods. Journal of Chemical Physics, 1984, 81: 511–519.
[40] Hoover WG., Canonical dynamics: Equilibrium phase-space distributions. Physical Review A, 1985, 31: 1695–1697.
[41] Darden T., York D., Pedersen L., Particle mesh Ewald: An N·log (N) method for Ewald sums in large systems. Journal of Chemical Physics, 1993, 98: 10089–10092.
[42] Shevelyova M.P., Paulechka Y.U., Kabo G.J., Blokhin A.V., Gubarevich T.M., Physicochemical properties of imidazolium-based ionic nanofluids: density, heat capacity, and enthalpy of formation. Journal of Physical Chemistry C, 2013, 117(9): 4782–4790.
[43] Clark R., Domaros M.V., Mcintosh A.J.S., Luzar A., Welton T., Effect of an external electric field on the dynamics and intramolecular structures of ions in an ionic liquid. Journal of Chemical Physics, 2019, 151(16): 164503.
[44] Lin Q., Guo P., Yang X., Ouyang Y., Feng Y., Zhang X., Zhao J., Zhang X., Li Q., Electro curing of oriented bismaleimide between aligned carbon nanotubes for high mechanical and thermal performances. Carbon, 2019, 145: 650–657.
[45] Liu X., Xue S., Ikram R., Zhu C., Shi Y., He M., Improving the viscosity and density of n-butanol as alternative to gasoline by blending with dimethyl carbonate. Fuel, 2021, 286: 119360.
[46] Evans D.J., Morriss G., Statistical mechanics of nonequilibrium liquids, 2nd edition. Statistical Mechanics of Nonequilibrium Liquids, 1990.
[47] Ge R., Hardacre C., Nancarrow P., Rooney D.W., Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. Journal of Chemical & Engineering Data. 2007, 52(5): 241–275.
[48] Allen M.P., Tildesley D.J., Computer simulation of liquids, Clarendon Press, Oxford, 1987.
[49] Harris K.R., Kanakubo M., Woolf L.A., Temperature and pressure dependence of the viscosity of the ionic liquids 1-hexyl-3-methylimidazolium hexafluorophosphate and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. Journal of Chemical & Engineering Data. 2007, 52(3): 1080–1085.
Outlines

/