Experimental Investigations on Thermal Transport Properties of Nanoscale-Graphite-Film

  • ZHOU Jing ,
  • SHI Changrui ,
  • ZHANG Zhongyin ,
  • FAN Xuanhui ,
  • LING Zheng ,
  • ZHU Jie ,
  • TANG Dawei
Expand
  • School of Energy and Power Engineering, Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, Dalian University of Technology, Dalian 116024, China

Online published: 2023-12-01

Supported by

The authors would acknowledge the support from National Natural Science Foundation of China (51976025, 51720105007) and the Fundamental Research Funds for the Central Universities (DUT20RC(5)023).

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

Accurately and directly characterizing the thermal properties of graphene and thin-graphite films (GFs) is of fundamental importance for understanding the heat transport mechanism and of practical interest in possible applications of thermal management. However, due to the lack of experiment data, the mechanism of the thickness dependence of GFs thermal properties has not been fully understood yet. In this study, a 90-nm-thick GF is characterized by the time-domain thermoreflectance method, and the obtained GFs in-plane thermal conductivity and interfacial thermal conductance between GFs and gold are (1354±297) W/(m·K) and (38±6) MW/(m2·K), respectively. Two theoretical models are also applied for comparison and discussion, and we conclude that the influence from the surface perturbation by supporting materials on the phonon transport of graphite nano-films will beyond the near surface layers to the more inner ones. This work not only provides a better understanding of the fundamental mechanisms of the thermal transport size effect in GFs, but also facilitates the possible applications of GFs as heat spreaders in the future.

Cite this article

ZHOU Jing , SHI Changrui , ZHANG Zhongyin , FAN Xuanhui , LING Zheng , ZHU Jie , TANG Dawei . Experimental Investigations on Thermal Transport Properties of Nanoscale-Graphite-Film[J]. Journal of Thermal Science, 2022 , 31(4) : 1008 -1015 . DOI: 10.1007/s11630-022-1622-9

References

[1] Balandin A.A., Thermal properties of graphene and nanostructured carbon materials. Nature Materials, 2011, 10(8): 569–581.
[2] Cai W.W., Moore A.L., Zhu Y.W., Li X.S., Chen S.S., Shi L., Ruoff R.S., Thermal transport in suspended and supported monolayer graphene grown by chemical vapor deposition. Nano Letters, 2010, 10(5): 1645–1651.
[3] Nika D.L., Ghosh S., Pokatilov E.P., Balandin A.A., Lattice thermal conductivity of graphene flakes: Comparison with bulk graphite. Applied Physics Letters, 2009, 94(20): 203103.
[4] Nika D.L., Pokatilov E.P., Balandin A.A., Theoretical description of thermal transport in graphene: The issues of phonon cut-off frequencies and polarization branches. Physica Status Solidi B-Basic Solid State Physics, 2011, 248(11): 2609–2614.
[5] Koh Y.K., Bae M.H., Cahill D.G., Pop E., Heat conduction across monolayer and few-layer graphenes. Nano Letters, 2010, 10(11): 4363–4368.
[6] Giovannetti G., Khomyakov P.A., Brocks G., Karpan V.M., Brink J.v.d., Kelly P.J., Doping graphene with metal contacts. Physical Review Letters, 2008, 101: 026803.
[7] Khomyakov P.A., Giovannetti G., Rusu P.C., Brocks G., van den Brink J., Kelly P.J., First-principles study of the interaction and charge transfer between graphene and metals. Physical Review B, 2009, 79(19): 195425.
[8] Sadeghi M.M., Jo I., Shi L., Phonon-interface scattering in multilayer graphene on an amorphous support. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(41): 16321–16326.
[9] Zheng Q.Y., Braun P.V., Cahill D.G., Thermal conductivity of graphite thin films grown by low temperature chemical vapor deposition on Ni(111). Advanced Materials Interfaces, 2016, 3(16): 1600234.
[10] Gengler J.J., Shenogin S.V., Bultman J.E., Roy A.K., Voevodin A.A., Muratore C., Limited thermal conductance of metal-carbon interfaces. Journal of Applied Physics, 2012, 112(9): 094904.
[11] Schmidt A.J., Collins K.C., Minnich A.J., Chen G., Thermal conductance and phonon transmissivity of metal-graphite interfaces. Journal of Applied Physics, 2010, 107(10): 104907.
[12] Brown D.B., Bougher T.L., Cola B.A., Kumar S., Oxidation limited thermal boundary conductance at metal-graphene interface. Carbon, 2018, 139: 913–921.
[13] Zhang C.W., Chen W.Y., Tao Y., Zhao W.W., Cai S., Liu C.H., Ni Z.H., Xu D.Y., Wei Z.Y., Yang J.K., Bi K.D., Chen Y.F., Electron contributions to the heat conduction across Au/graphene/Au interfaces. Carbon, 2017, 115: 665–671.
[14] Foley B.M., Hernandez S.C., Duda J.C., Robinson J.T., Walton S.G., Hopkins P.E., Modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces. Nano Letters, 2015, 15(8): 4876–4882.
[15] Losego M.D., Grady M.E., Sottos N.R., Cahill D.G., Braun P.V., Effects of chemical bonding on heat transport across interfaces. Nature Materials, 2012, 11(6): 502– 506.
[16] Cahill D.G., Analysis of heat flow in layered structures for time-domain thermoreflectance. Review of Scientific Instruments, 2004, 75(12): 5119–5122.
[17] Schmidt A.J., Chen X., Chen G., Pulse accumulation, radial heat conduction, and anisotropic thermal conductivity in pump-probe transient thermoreflectance. Review of Scientific Instruments, 2008, 79(11): 114902.
[18] Zhu J., Tang D.W., Wang W., Liu J., Holub K.W., Yang R.G., Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films. Journal of Applied Physics, 2010, 108(9): 094315.
[19] Zhu L.D., Sun F.Y., Zhu J., Tang D.W., Study on ultra fast nonequilibrium heat transfers in nano metal films by femtosecond laser pump and probe method. Acta Physica Sinica, 2012, 61(13): 134402.
[20] Zheng K., Zhu J., Ma Y.M., Tang D.W., Wang F.S., Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire. Chinese Physics B, 2014, 23(10): 107307.
[21] Zhu J., Wu X.W., Lattery D.M., Zheng W., Wang X.J., The ultrafast laser pump-probe technique for thermal characterization of materials with micro/nanostructures. Nanoscale and Microscale Thermophysical Engineering, 2017, 21(3): 177–198.
[22] Zhu L.D., Sun F.Y., Zhu J., Tang D.W., Li Y.H., Guo C.H., Nano-metal film thermal conductivity measurement by using the femtosecond laser pump and probe method. Chinese Physics Letters, 2012, 29(6): 066301.
[23] Zhu J., Feng T.L., Mills S., Wang P.P., Wu X.W., Zhang L.Y., Pantelides S.T., Du X., Wang X.J., Record-low and anisotropic thermal conductivity of a quasi-one- dimensional bulk ZrTe5 single crystal. ACS Applied Materials & Interfaces, 2018, 10(47): 40740–40747.
[24] Hopkins P.E., Serrano J.R., Phinney L.M., Kearney S.P., Grasser T.W., Harris C.T., Criteria for cross-plane dominated thermal transport in multilayer thin film systems during modulated laser heating. Journal of Heat Transfer-Transactions of the ASME, 2010, 132(8): 081302.
[25] Hostetler J.L., Smith A.N., Norris P.M., Thin-film thermal conductivity and thickness measurements using picosecond ultrasonics. Microscale Thermophysical Engineering, 1997, 1(3): 237–244.
[26] Buehlef M.G., Thurber W.R., A planar four-probe test structure for measuring bulk resistivity. IEEE Transactions on Electron Devices, 1976, 23(8): 968–974.
[27] Ashcroft N.W., Mermin N.D., Solid state physics. xxi ed. Holt, Rinehart and Winston, New York, 1976, pp. 826.
[28] Jang H., Wood J.D., Ryder C.R., Hersam M.C., Cahill D.G., Anisotropic thermal conductivity of exfoliated black phosphorus. Advanced Materials, 2015, 27(48): 8017–8022.
[29] Liu J., Choi G.-M., Cahill D.G., Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. Journal of Applied Physics, 2014, 116(23): 233107.
[30] Klemens P.G., Theory of thermal conduction in thin ceramic films. International Journal of Thermophysics, 2001, 22(1): 265–275.
[31] Seol J.H., Jo I., Moore A.L., Lindsay L., Aitken Z.H., Pettes M.T., Li X., Yao Z., Huang R., Broido D., Mingo N., Ruoff R.S., Shi L., Two-dimensional phonon transport in supported graphene. Science, 2010, 328(9): 213–216.
[32] Jang W., Chen Z., Bao W., Lau C.N., Dames C., Thickness-dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Letters, 2010, 10(10): 3909–3913.
[33] Kuang Y., Lindsay L., Huang B., Unusual enhancement in intrinsic thermal conductivity of multilayer graphene by tensile strains. Nano Letters, 2015, 15(9): 6121–  6127.
[34] Kuang Y., Lindsay L., Shi S., Wang X., Huang B., Thermal conductivity of graphene mediated by strain and size. International Journal of Heat and Mass Transfer, 2016, 101: 772–778.
[35] Xu X., Pereira L.F., Wang Y., Wu J., Zhang K., Zhao X., Bae S., Bui C.T., Xie R., Thong J.T., Hong B.H., Loh K.P., Donadio D., Li B., Ozyilmaz B., Length-dependent thermal conductivity in suspended single-layer graphene. Nature Communications, 2014, 5: 3689.
[36] Minnich A.J., Thermal phonon boundary scattering in anisotropic thin films. Applied Physics Letters, 2015, 107(18): 183106.
[37] Subramanyan H., Kim K., Lu T., Zhou J., Liu J., On the importance of using exact full phonon dispersions for predicting interfacial thermal conductance of layered materials using diffuse mismatch model. AIP Advances, 2019, 9(11): 115116.
[38] Hopkins P.E., Baraket M., Barnat E.V., Beechem T.E., Kearney S.P., Duda J.C., Robinson J.T., Walton S.G., Manipulating thermal conductance at metal-graphene contacts via chemical functionalization. Nano Letters, 2012, 12(2): 590–595.
[39] Gundrum B.C., Cahill D.G., Averback R.S., Thermal conductance of metal-metal interfaces. Physical Review B, 2005, 72(24): 245426.
[40] Huang B., Koh Y.K., Negligible electronic contribution to heat transfer across intrinsic metal/graphene interfaces. Advanced Materials Interfaces, 2017, 4(20): 1700559.
[41] Nagashio K., Nishimura T., Kita K., Toriumi A., Contact resistivity and current flow path at metal/graphene contact. Applied Physics Letters, 2010, 97(14): 143514.
[42] Huang B.C., Zhang M., Wang Y.j., Woo J., Contact resistance in top-gated graphene field-effect transistors. Applied Physics Letters, 2011, 99(3): 032107.
Outlines

/