[1] Pesaran A., Battery thermal management in EVs and HEVs: issues and solutions. Advanced Automotive Battery Conference, Las Vegas, Nevada, USA, 2001.
[2] Lu L., Han X., Li J., Hua J., Ouyang M., A review on the key issues for lithium-ion battery management in electric vehicles. Journal of Power Sources, 2013, 226: 272–288.
[3] Rao Z., Wang S., A review of power battery thermal energy management. Renewable and Sustainable Energy Reviews, 2011, 15: 4554–4571.
[4] Zhao R., Zhang S., Liu J., Gu J., A review of thermal performance improving methods of lithium ion battery: electrode modification and thermal management system. Journal of Power Sources, 2015, 299: 557–577.
[5] An Z., Jia L., Ding Y., Dang C., Li X., A review on lithium-ion power battery thermal management technologies and thermal safety. Journal of Thermal Science, 2017, 26(5): 391–412.
[6] Mahamud R., Park C., Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity. Journal of Power Sources, 2011, 196: 5685–5696.
[7] Wang T., Tseng K.J., Zhao J., Wei Z., Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies. Applied Energy, 2014, 134: 229–238.
[8] Fan Y., Bao Y., Ling C., Chu Y., Tan X., Yang S., Experimental study on the thermal management performance of air cooling for high energy density cylindrical lithium-ion batteries. Applied Thermal Engineering, 2019, 155: 96–109.
[9] Pan S., Ji C., Wang S., Wang B., Study on the performance of parallel air-cooled structure and optimized design for lithium-ion battery module. Fire Technology, 2020, 56: 2623–2647.
[10] Putra N., Ariantara B., Pamungkas R.A., Experimental investigation on performance of lithium-ion battery thermal management system using flat plate loop heat pipe for electric vehicle application. Applied Thermal Engineering, 2016, 99: 784–789.
[11] Greco A., Cao D., Jiang X., Yang H., A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes. Journal of Power Sources, 2014, 257: 344–355.
[12] Ye Y., Saw L.H., Shi Y., Tay A.A.O., Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging. Applied Thermal Engineering, 2015, 86: 281–291.
[13] Wang Q., Jiang B., Xue Q., Sun H., Li B., Zou H., Yan Y., Experimental investigation on EV battery cooling and heating by heat pipes. Applied Thermal Engineering, 2015, 88: 54–60.
[14] Javani N., Dincer I., Naterer G.F., Yilbas B.S., Heat transfer and thermal management with PCMs in a Li-ion battery cell for electric vehicles. International Journal of Heat and Mass Transfer, 2014, 72: 690–703.
[15] Huang Q., Li X., Zhang G., Deng J., Wang C., Thermal management of Lithium-ion battery pack through the application of flexible form-stable composite phase change materials. Applied Thermal Engineering, 2020, 183: 116151.
[16] Zhang J., Li X., Zhang G., Wu H., Rao Z., Guo J., Zhou D., Experimental investigation of the flame retardant and form-stable composite phase change materials for a power battery thermal management system. Journal of Power Sources, 2020, 480: 229116.
[17] Greco A., Jiang X., Cao D., An investigation of lithium-ion battery thermal management using paraffin/porous-graphite-matrix composite. Journal of Power Sources, 2015, 278: 50–68.
[18] Deng T., Zhang G., Ran Y., Study on thermal management of rectangular Li-ion battery with serpentine-channel cold plate. International Journal of Heat and Mass Transfer, 2018, 125: 143–152.
[19] Huo Y., Rao Z., Liu X., Zhao J., Investigation of power battery thermal management by using mini-channel cold plate. Energy Conversion and Management, 2015, 89: 387–395.
[20] Zhao J., Rao Z., Li Y., Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery. Energy Conversion and Management, 2015, 103: 157– 165.
[21] Rao Z., Wang Q., Huang C., Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system. Applied Energy, 2016, 164: 659–669.
[22] Jin L.W., Lee P.S., Kong X.X., Fan Y., Chou S.K., Ultra-thin mini-channels LCP for EV battery thermal management. Applied Energy, 2014, 113: 1786–1794.
[23] Wei L., Jia L., An Z., Dang C., Experimental study on thermal management of cylindrical Li-ion battery with flexible microchannel plates. Journal of Thermal Science, 2020, 29(4): 1001–1009.
[24] Fang Y., Shen J., Zhu Y., Ye F., Li K., Su L., Investigation on the transient thermal performance of a mini-channel cold plate for battery thermal management. Journal of Thermal Science, 2021, 30: 914–925.
[25] Wang Y., Wu J., Thermal performance predictions for an HFE-7000 direct flow boiling cooled battery thermal management system for electric vehicles. Energy Conversion and Management, 2020, 207: 112569.
[26] Bandhauer T.M., Garimella S., Passive, Internal thermal management system for batteries using microscale liquid-vapor phase change. Applied Thermal Engineering, 2013, 61(2): 756–769.
[27] Sheng L., Su L., Zhang H., Li K., Fang Y., Ye W., Fang Y., Numerical investigation on a lithium ion battery thermal management utilizing a serpentine-channel liquid cooling plate exchanger. International Journal of Heat and Mass Transfer, 2019, 141: 658–668.
[28] Monika K., Chakraborty C., Roy S., Dinda S., Singh S.A., Datta S.P., An improved mini-channel based liquid cooling strategy of prismatic LiFePO4 batteries for electric or hybrid vehicles. Journal of Energy Storage, 2021, 35: 102301.
[29] An Z., Jia L., Li X., Ding Y., Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel. Applied Thermal Engineering, 2017, 117: 534–543.
[30] Ju X., Xu C., Zhou Y., Liao Z., Yang Y., Numerical investigation of a novel manifold micro-pin-fin heat sink combining chessboard nozzle-jet concept for ultra-high heat flux removal. International Journal of Heat and Mass Transfer, 2018, 126: 1206–1218.
[31] Panchal S., Dincer I., Agelin-Chaab M., Fraser R., Fowler M., Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery. International Journal of Thermal Sciences, 2016, 99: 204–212.
[32] An Z., Jia L., Wei L., Dang C., Peng Q., Investigation on lithium-ion battery electrochemical and thermal characteristic based on electrochemical-thermal coupled model. Applied Thermal Engineering, 2018, 137: 792–807.
[33] Du S., Jia M., Cheng Y., Tang Y., Zhang H., Ai L., Zhang K., Lai Y., Study on the thermal behaviors of power lithium iron phosphate (LFP) aluminum-laminated battery with different tab configurations. International Journal of Thermal Sciences, 2015, 89: 327–336.