[1] Maisanam A.K.S., Biswas A., Sharma K.K., Integrated socio-environmental and techno-economic factors for designing and sizing of a sustainable hybrid renewable energy system. Energy Conversion and Management, 2021, 247: 114709.
[2] Liu L., Wang Z., Wang Y., Wang J., Chang R., et al., Optimizing wind/solar combinations at finer scales to mitigate renewable energy variability in China. Renewable and Sustainable Energy Reviews, 2020, 132: 110151.
[3] Zhu T., Li Q., Xuan Y., Liu D., Hong H., Performance investigation of a hybrid photovoltaics and mid- temperature methanol thermochemistry system. Applied Energy, 2019, 256: 113908.
[4] Liang H., Wang F., Yang L., Cheng Z., Shuai Y., et al., Progress in full spectrum solar energy utilization by spectral beam splitting hybrid PV/T system. Renewable and Sustainable Energy Reviews, 2021, 141: 110785.
[5] Huaxu L., Fuqiang W., Dong Z., Ziming C., et al., Experimental investigation of cost-effective ZnO nanofluid based spectral splitting CPV/T system. Energy, 2020, 194: 116913.
[6] Feng C., Shao C., Wang X., CSP clustering in unit commitment for power system production cost modeling. Renewable Energy, 2021, 168: 1217–1228.
[7] Wang Q., Huang J., Shen Z., Yao Y., Pei G., et al., Negative thermal-flux phenomenon and regional solar absorbing coating improvement strategy for the next-generation solar power tower. Energy Conversion and Management, 2021, 247: 114756.
[8] He Y., Qiu Y., Wang K., Yuan F., Wang W., et al., Perspective of concentrating solar power. Energy, 2020, 198: 117373.
[9] Abbas R., Montes M.J., Piera M., Martínez-Val J.M., Solar radiation concentration features in Linear Fresnel Reflector arrays. Energy Conversion and Management, 2012, 54: 133–144.
[10] Zhao N., Yan S., Ma X., Wu Z., Ming T., et al., Analysis of the light concentration loss of a Fresnel CPV/T System after dust accumulation. Journal of Thermal Sciences, 2021. DOI: 10.1007/s11630-021-1466-8.
[11] Yan S., Zhao S., Ma X., Ming T., Wu Z., et al., Thermoelectric and exergy output performance of a Fresnel-based HCPV/T at different dust densities. Renewable Energy, 2020, 159: 801–811.
[12] Bouaddi S., Ihlal A., Fernández-García A., Comparative analysis of soiling of CSP mirror materials in arid zones. Renewable Energy, 2017, 101: 437–449.
[13] Azouzoute A., Merrouni A.A., Garoum M., Bennouna E.G., Richter C., Comparison of soiling effect of two different solar mirrors in mid-south of Morocco. AIP conference proceedings, 2019. DOI: 10.1063/1.5117699
[14] Elminir H.K., Ghitas A.E., Hamid R.H., El-Hussainy F., Beheary M.M., et al., Effect of dust on the transparent cover of solar collectors. Energy Conversion and Management, 2006, 47: 3192–3203.
[15] Picotti G., Borghesani P., Cholette M.E., Manzolini G., Soiling of solar collectors – Modelling approaches for airborne dust and its interactions with surfaces. Renewable and Sustainable Energy Reviews, 2018, 81: 2343–2357.
[16] Merrouni A.A., Mezrhab A., Ghennioui A., Naimi Z., Measurement, comparison and monitoring of solar mirror's specular reflectivity using two different Reflectometers. Energy Procedia, 2017, 119: 433–445.
[17] Gholami A., Saboonchi A., Alemrajabi A.A., Experimental study of factors affecting dust accumulation and their effects on the transmission coefficient of glass for solar applications. Renewable Energy, 2017, 112: 466–473.
[18] Bellmann P., Wolfertstetter F., Conceição R., Silva H.G., Comparative modeling of optical soiling losses for CSP and PV energy systems. Solar Energy, 2020, 197: 229–237.
[19] Wu Z., Yan S., Wang Z., Ming T., Zhao X., et al., The effect of dust accumulation on the cleanliness factor of a parabolic trough solar concentrator. Renewable Energy, 2020, 152: 529–539.
[20] Heimsath A., Lindner P., Klimm E., Schmid T., Moreno K.O., et al., Specular reflectance of soiled glass mirrors – Study on the impact of incidence angles. AIP conference proceedings 2016, 1734: 130009. DOI: 10.1063/1.4949219.
[21] Zhao W., Lv Y., Zhou Q., Yan W., Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance. Energy, 2021, 233: 121240.
[22] Skouri S., Bouadila S., Ben Salah M., Ben Nasrallah S., Comparative study of different means of concentrated solar flux measurement of solar parabolic dish. Energy Conversion and Management, 2013, 76: 1043–1052.
[23] Ballestrin J., A non-water-cooled heat flux measurement system under concentrated solar radiation conditions. Solar Energy, 2002, 73: 159–168.
[24] Röger M., Herrmann P., Ulmer S., et al., Techniques to measure solar flux density distribution on large-scale receivers. Journal of Solar Energy Engineering, 2014, 136(3): 031013.
[25] Roldán M.I., Monterreal R., Heat flux and temperature prediction on a volumetric receiver installed in a solar furnace. Applied Energy, 2014, 120: 65–74.
[26] Xiao G., Guo K., Xu W., Ni M., Luo Z., et al., An improved method of Lambertian CCD-camera radiation flux measurement based on SMARTS (simple model of the atmospheric radiative transfer of sunshine) to reduce spectral errors. Energy, 2014, 67: 74–80.
[27] Pozzobon V., Salvador S., High heat flux mapping using infrared images processed by inverse methods: An application to solar concentrating systems. Solar Energy, 2015, 117: 29–35.
[28] Lee H., Chai K., Kim J., Lee S., Yoon H., et al., Optical performance evaluation of a solar furnace by measuring the highly concentrated solar flux. Energy, 2014, 66: 63–69.
[29] Zarei T., Abdolzadeh M., Soltani M., Aghanajafi C., Computational investigation of dust settlement effect on power generation of three solar tracking photovoltaic modules using a modified angular losses coefficient. Solar Energy, 2021, 222: 269–289.
[30] Li X., Qin H., Zhang Y., Yao W., Li Y., et al., Dust effect on the optical-thermal properties of absorber plate in a transpired solar air collector. Energy Conversion and Management, 2018, 169: 13–21.
[31] Lu J., Hajimirza S., Optimizing sun-tracking angle for higher irradiance collection of PV panels using a particle-based dust accumulation model with gravity effect. Solar Energy, 2017, 158: 71–82.
[32] Oh S., Analytic and Monte-Carlo studies of the effect of dust accumulation on photovoltaics. Solar Energy, 2019, 188: 1243–1247.
[33] Li X., Niu K., Effectively predict the solar radiation transmittance of dusty photovoltaic panels through Lambert-Beer law. Renewable Energy, 2018, 123: 634–638.
[34] Picotti G., Moretti L., Cholette M.E., Binotti M., Simonetti R., et al., Optimization of cleaning strategies for heliostat fields in solar tower plants. Solar Energy, 2020, 204: 501–514.
[35] Bouaddi S., Ihlal A., Fernández-García A., Soiled CSP solar reflectors modeling using dynamic linear models. Solar Energy, 2015, 122: 847–863.
[36] Heimsath A., Nitz P., The effect of soiling on the reflectance of solar reflector materials - Model for prediction of incidence angle dependent reflectance and attenuation due to dust deposition. Solar Energy Materials and Solar Cells, 2019, 195: 258–268.
[37] Wu Z., Yan S., Ming T., Zhao X., Zhang N., Analysis and modeling of dust accumulation-composed spherical and cubic particles on PV module relative transmittance. Sustainable Energy Technologies and Assessments, 2021, 44: 101015.
[38] Zhao X., Chen Z., Yan S., Ming T., Wu Z., et al., Influence of dust accumulation on the solar reflectivity of a linear Fresnel reflector. Journal of Thermal Sciences, 2021, 30(5): 1526–1540.
[39] Ulmer S., Reinalter W., Heller P., et al., Beam characterization and improvement with a flux mapping system for dish concentrators. Journal of Solar Energy Engineering, 2002, 124(5): 182–188.
[40] Kalogirou S.A., Solar thermal collectors and applications. Progress in Energy and Combustion Science, 2004, 30: 231–295.