[1] Deen N.G., Kuipers J.A.M., Direct numerical simulation of fluid flow and mass transfer in dense fluid-particle systems. Industrial and Engineering Chemistry Research, 2013, 52(33): 11266–11274. DOI: 10.1021/ie303411k
[2] Wang J., Continuum theory for dense gas-solid flow: A state-of-the-art review. Chemical Engineering Science, 2020, 215: 115428. DOI: 10.1016/j.ces.2019.115428
[3] Malcus S., Chaplin G., Pugsley T., The hydrodynamics of the high-density bottom zone in a CFB riser analyzed by means of electrical capacitance tomography (ECT). Chemical Engineering Science, 2000, 55(19): 4129–4138. DOI: 10.1016/S0009-2509(00)00083-X
[4] Liu S., Chen Q., Wang H.G., Jiang F., Ismail I., Yang W.Q., Electrical capacitance tomography for gas-solids flow measurement for circulating fluidized beds. Flow Measurement and Instrumentation, 2005, 16(2–3): 135–144. DOI: 10.1016/j.flowmeasinst.2005.02.013
[5] Mychkovsky A.G., Ceccio S.L., LDV measurements and analysis of gas and particulate phase velocity profiles in a vertical jet plume in a 2D bubbling fluidized bed Part III: The effect of fluidization. Powder Technology, 2012, 220: 37–46. DOI: 10.1016/j.powtec.2011.09.029
[6] Liu X., Gao S., Li J., Characterizing particle clustering behavior by PDPA measurement for dilute gas-solid flow. Chemical Engineering Journal, 2005, 108(3): 193–202. DOI: 10.1016/j.cej.2005.01.012
[7] Hoomans B.P.B., Kuipers J.A.M., Mohd Salleh M.A., Stein M., Seville J.P.K., Experimental validation of granular dynamics simulations of gas-fluidised beds with homogenous in-flow conditions using Positron Emission Particle Tracking. Powder Technology, 2001, 116(2–3): 166–177. DOI: 10.1016/S0032-5910(00)00391-0
[8] Van de Velden M., Baeyens J., Seville J.P.K., Fan X., The solids flow in the riser of a Circulating Fluidised Bed (CFB) viewed by Positron Emission Particle Tracking (PEPT). Powder Technology, 2008, 183(2): 290–296. DOI: 10.1016/j.powtec.2007.07.027
[9] Buist K.A., Jayaprakash P., Kuipers J.A.M., Deen N.G., Padding J.T., Magnetic particle tracking for nonspherical particles in a cylindrical fluidized bed. AIChE Journal, 2017, 63(12): 5335–5342. DOI: 10.1002/aic.15854
[10] Link J., Zeilstra C., Deen N., Kuipers H., Validation of a discrete particle model in a 2D spout-fluid bed using non-intrusive optical measuring techniques. Canadian Journal of Chemical Engineering, 2004, 82(1): 30–36. DOI: 10.1002/cjce.5450820105
[11] van der Hoef M.A., Ye M., van Sint Annaland M., Andrews A.T., Sundaresan S., Kuipers J.A.M., Multiscale modeling of gas-fluidized beds. Advances in Chemical Engineering, 2006, 31(06): 65–149. DOI: 10.1016/S0065-2377(06)31002-2
[12] Deen N.G., Van Sint Annaland M., Van der Hoef M.A., Kuipers J.A.M., Review of discrete particle modeling of fluidized beds. Chemical Engineering Science, 2007, 62(1–2): 28–44. DOI: 10.1016/j.ces.2006.08.014
[13] Deen N.G., Peters E.A.J.F., Padding J.T., Kuipers J.A.M., Review of direct numerical simulation of fluid-particle mass, momentum and heat transfer in dense gas-solid flows. Chemical Engineering Science, 2014, 116: 710–724. DOI: 10.1016/j.ces.2014.05.039
[14] Bhatnagar P.L., Gross E.P., Krook M., A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical Review, 1954, 94(3): 511–525. DOI: 10.1103/PhysRev.94.511
[15] Qian Y.H., D’Humières D., Lallemand P., Lattice BGK models for navier-stokes equation. Europhysics Letters, 1992, 17(6): 479–484. DOI: 10.1209/0295-5075/17/6/001
[16] Wang L.P., Min H., Peng C., Geneva N., Guo Z., A Lattice-Boltzmann scheme of the Navier-Stokes equation on a three-dimensional cuboid lattice. Computers and Mathematics with Applications, 2019, 78(4): 1053–1075. DOI: 10.1016/j.camwa.2016.06.017
[17] Ladd A.J., Numerical simulations of particulate suspensions via a Discretized Boltzmann equation. Part 1. Theoretical foundation. Journal of Fluid Mechanics, 1994, 271: 285–309. DOI: 10.1017/S0022112094001771
[18] Ladd A.J., Numerical simulations of particulate suspensions via a Discretized Boltzmann equation. Part 2. Numerical results. Journal of Fluid Mechanics, 1994, 271: 311–339. DOI: 10.1017/S0022112094001783
[19] Hill R.J., Koch D.L., Ladd A.J.C., Moderate-Reynolds- number flows in ordered and random arrays of spheres. Journal of Fluid Mechanics, 2001, 448: 243–278. DOI: 10.1017/s0022112001005936
[20] Van der Hoef M.A., Beetstra R., Kuipers J.A.M., Lattice-Boltzmann simulations of low-Reynolds-number flow past mono- and bidisperse arrays of spheres: Results for the permeability and drag force. Journal of Fluid Mechanics, 2005, 528: 233–254.
DOI: 10.1017/S0022112004003295
[21] Beetstra R., van der Hoef M.A., Kuipers J.A.M., Numerical study of segregation using a new drag force correlation for polydisperse systems derived from Lattice-Boltzmann simulations. Chemical Engineering Science, 2007, 62(1–2): 246–255.
DOI: 10.1016/j.ces.2006.08.054
[22] Beetstra R., Van Der Hoef M.A., Kuipers J.A.M., Drag force of intermediate reynolds number flow past mono- And bidisperse arrays of spheres. AIChE Journal, 2007, 53(2): 489–501. DOI: 10.1002/aic.11065
[23] Peskin C.S., Numerical analysis of blood flow in the heart. Journal of Computational Physics, 1977, 25(3): 220–252. DOI: 10.1016/0021-9991(77)90100-0
[24] Peskin C.S., Flow patterns around heart valves: A numerical method. Journal of Computational Physics, 1972, 10(2): 252–271.
DOI: 10.1016/0021-9991(72)90065-4
[25] Uhlmann M., An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of Computational Physics, 2005, 209(2): 448–476. DOI: 10.1016/j.jcp.2005.03.017
[26] Feng Z.G., Michaelides E.E., Robust treatment of no-slip boundary condition and velocity updating for the Lattice-Boltzmann simulation of particulate flows. Computers and Fluids, 2009, 38(2): 370–381. DOI: 10.1016/j.compfluid.2008.04.013
[27] Kriebitzsch S.H.L., van der Hoef M.A., Kuipers J.A.M., Drag force in discrete particle models-Continuum scale or single particle scale? AIChE Journal, 2013, 59(1): 316–324. DOI: 10.1002/aic.13804
[28] Feng Z.G., Michaelides E.E., Inclusion of heat transfer computations for particle laden flows. Physics of Fluids, 2008, 20: 040604. DOI: 10.1063/1.2911022
[29] Feng Z.G., Michaelides E.E., Heat transfer in particulate flows with Direct Numerical Simulation (DNS). International Journal of Heat and Mass Transfer, 2009, 52(3–4): 777–786. DOI: 10.1016/j.ijheatmasstransfer.2008.07.023
[30] Deen N.G., Kriebitzsch S.H.L., van der Hoef M.A., Kuipers J.A.M., Direct numerical simulation of flow and heat transfer in dense fluid-particle systems. Chemical Engineering Science, 2012, 81: 329–344. DOI: 10.1016/j.ces.2012.06.055
[31] Tavassoli H., Kriebitzsch S.H.L., van der Hoef M.A., Peters E.A.J.F., Kuipers J.A.M., Direct numerical simulation of particulate flow with heat transfer. International Journal of Multiphase Flow, 2013, 57: 29–37. DOI: 10.1016/j.ijmultiphaseflow.2013.06.009
[32] Shao X., Shi Y., Yu Z., Combination of the fictitious domain method and the sharp interface method for direct numerical simulation of particulate flows with heat transfer. International Journal of Heat and Mass Transfer, 2012, 55(23–24): 6775–6785.
DOI: 10.1016/j.ijheatmasstransfer.2012.06.085
[33] Hoomans B.P.B., Kuipers J.A.M., Briels W.J., Swaaij W.P.M.V.A.N., Discrete particle simulation of bubble and slug formation in a 2D gas-fluidised bed: A hard-sphere approach. Science, 1996, 51(1): 99–118.
[34] Cundall P.A., Strack O.D.L., A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47–65. DOI: 10.1680/geot.1979.29.1.47
[35] Tsuji Y., Kawaguchi T., Tanaka T., Discrete particle simulation of two-dimensional fluidized bed. Powder Technology, 1993, 77(1): 79–87. DOI: 10.1016/0032-5910(93)85010-7
[36] Takeuchi S., Wang S., Rhodes M., Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system. Chemical Engineering Science, 2004, 59(17): 3495–3504. DOI: 10.1016/j.ces.2004.03.027
[37] He Y., Peng W., Tang T., Yan S., Zhao Y., DEM numerical simulation of wet cohesive particles in a spout fluid bed. Advanced Powder Technology, 2016, 27(1): 93–104. DOI: 10.1016/j.apt.2015.10.022
[38] Link J.M., Cuypers L.A., Deen N.G., Kuipers J.A.M., Flow regimes in a spout-fluid bed: A combined experimental and simulation study. Chemical Engineering Science, 2005, 60(13): 3425–3442. DOI: 10.1016/j.ces.2005.01.027
[39] van Buijtenen M.S., van Dijk W.J., Deen N.G., Kuipers J.A.M., Leadbeater T., Parker D.J., Numerical and experimental study on multiple-spout fluidized beds. Chemical Engineering Science, 2011, 66(11): 2368–2376. DOI: 10.1016/j.ces.2011.02.055
[40] Tang T., He Y., Tai T., Wen D., DEM numerical investigation of wet particle flow behaviors in multiple-spout fluidized beds. Chemical Engineering Science, 2017, 172: 79–99. DOI: 10.1016/j.ces.2017.06.025
[41] Müller C.R., Holland D.J., Sederman A.J., Scott S.A., Dennis J.S., Gladden L.F., Granular temperature: Comparison of magnetic resonance measurements with discrete element model simulations. Powder Technology, 2008, 184(2): 241–253. DOI: 10.1016/j.powtec.2007.11.046
[42] Sakai M., Abe M., Shigeto Y., Mizutani S., Takahashi H., Viré A., Percival J.R., Xiang J., Pain C.C., Verification and validation of a coarse grain model of the DEM in a bubbling fluidized bed. Chemical Engineering Journal, 2014, 244: 33–43. DOI: 10.1016/j.cej.2014.01.029
[43] Patil A. V., Peters E.A.J.F., Kuipers J.A.M., Comparison of CFD-DEM heat transfer simulations with infrared/visual measurements. Chemical Engineering Journal, 2015, 277: 388–401. DOI: 10.1016/j.cej.2015.04.131
[44] Syamlal M., Gidaspow D., Hydrodynamics of fluidization: Prediction of wall to bed heat transfer coefficients. AIChE Journal, 1985, 31(1): 127–135. DOI: 10.1002/aic.690310115
[45] Kruggel-Emden H., Simsek E., Rickelt S., Wirtz S., Scherer V., Review and extension of normal force models for the discrete element method. Powder Technology, 2007, 171(3): 157–173. DOI: 10.1016/j.powtec.2006.10.004
[46] Kruggel-Emden H., Wirtz S., Scherer V., An analytical solution of different configurations of the linear viscoelastic normal and frictional-elastic tangential contact model. Chemical Engineering Science, 2007, 62(23): 6914–6926. DOI: 10.1016/j.ces.2007.08.049
[47] van Wachem B., Zastawny M., Zhao F., Mallouppas G., Modelling of gas-solid turbulent channel flow with non-spherical particles with large Stokes numbers. International Journal of Multiphase Flow, 2015, 68: 80–92. DOI: 10.1016/j.ijmultiphaseflow.2014.10.006
[48] Gidaspow D., Multiphase flow and fluidization— Continuum and kinetic theory descriptions. The first edition. Academic Press, 1994.
[49] Wen C.Y., Yu Y.H., Mechanics of fluidization. Chemical Engineering Progress (Symposium Series), 1966, 62(1): 100–111.
[50] Ergun S., Fluid flow through packed columns. Journal of Chemical Engineering Progress, 1952, 48: 89–94. DOI: citeulike-article-id:7797897
[51] Di Felice R., The voidage function for fluid-particle interaction systems. International Journal of Multiphase Flow, 1994, 20(1): 153–159. DOI: 10.1016/0301-9322(94)90011-6
[52] Hölzer A., Sommerfeld M., New simple correlation formula for the drag coefficient of non-spherical particles. Powder Technology, 2008, 184(3): 361–365. DOI: 10.1016/j.powtec.2007.08.021
[53] Li J., Mason D.J., A computational investigation of transient heat transfer in pneumatic transport of granular particles. Powder Technology, 2000, 112(3): 273–282. DOI: 10.1016/S0032-5910(00)00302-8
[54] Gunn D.J., Transfer of heat or mass to particles in fixed and fluidised beds. International Journal of Heat and Mass Transfer, 1978, 21(4): 467–476. DOI: 10.1016/0017-9310(78)90080-7
[55] Zhou H., Flamant G., Gauthier D., Flitris Y., Simulation of coal combustion in a bubbling fluidized bed by distinct element method. Chemical Engineering Research and Design, 2003, 81(9): 1144–1149. DOI: 10.1205/026387603770866308
[56] Gidaspow D., Applications of kinetic theory. Multiphase Flow and Fluidization, 1994, pp. 297–336. DOI: 10.1016/b978-0-08-051226-6.50014-5
[57] Anderson T.B., Jackson R., Fluid mechanical description of fluidized beds: Equations of motion. Industrial and Engineering Chemistry Fundamentals, 1967, 6(4): 527– 539. DOI: 10.1021/i160024a007
[58] Elghobashi S.E., Abou-Arab T.W., A two-equation turbulence model for two-phase flows. Physics of Fluids, 1983, 26(4): 931–938. DOI: 10.1063/1.864243
[59] Chen C.P., Studies in two-phase turbulence closure modeling. Michigan State University, USA, 1985.
[60] Patil D.J., Smit J., Van Sint Annaland M., Kuipers J.A.M., Wall-to-bed heat transfer in gas-solid bubbling fluidized beds. AIChE Journal, 2006, 52(1): 58–74. DOI: 10.1002/aic.10590
[61] Lun C.K.K., Savage S.B., Jeffrey D.J., Chepurniy N., Kinetic theories for granular flow: Inelastic particles in Couette flow and slightly inelastic particles in a general flowfield. Journal of Fluid Mechanics, 1984, 140: 223–256. DOI: 10.1017/S0022112084000586
[62] Johnson P.C., Nott P., Jackson R., Frictional-collisional equations of motion for particulate flows and their application to chutes. Journal of Fluid Mechanics, 1990, 210(501): 501–535. DOI: 10.1017/S0022112090001380
[63] Lu H.L., Gidaspow D., Hydrodynamics of binary fluidization in a riser: CFD simulation using two granular temperatures. Chemical Engineering Science, 2003, 58(16): 3777–3792. DOI: 10.1016/S0009-2509(03)00238-0
[64] Li J.H., Cheng C., Zhang Z., Yuan J., Nemet A., Fett F.N., The EMMS model—its application, development and updated concepts. Chemical Engineering Science, 1999, 54(22): 5409–5425. DOI: 10.1016/s0009-2509(99)00274-2
[65] Kuipers J.A.M., Prins W., Van Swaaij W.P.M., Numerical calculation of wall-to-bed heat-transfer coefficients in gas-fluidized beds. AIChE Journal, 1992, 38(7): 1079–1091. DOI: 10.1002/aic.690380711
[66] Lin J.Z., Zhang W.F., Yu Z.S., Numerical research on the orientation distribution of fibers immersed in laminar and turbulent pipe flows. Journal of Aerosol Science, 2004, 35(1): 63–82. DOI: 10.1016/S0021-8502(03)00388-4
[67] Guan Y., Guadarrama-Lara R., Jia X., Zhang K., Wen D., Lattice Boltzmann simulation of flow past a non-spherical particle. Advanced Powder Technology, 2017, 28(6): 1486–1494. DOI: 10.1016/j.apt.2017.03.018
[68] Zhang N., Rong L.W., Dong K.J., Zeng Q.D., Fluid flow and heat transfer characteristics over a superelliptic cylinder at incidence. Powder Technology, 2020, 360: 193–208. DOI: 10.1016/j.powtec.2019.09.076
[69] Wang Z., Fan J., Luo K., Combined multi-direct forcing and immersed boundary method for simulating flows with moving particles. International Journal of Multiphase Flow, 2008, 34(3): 283–302. DOI: 10.1016/j.ijmultiphaseflow.2007.10.004
[70] Wang L., Guo Z.L., Mi J.C., Drafting, kissing and tumbling process of two particles with different sizes. Computers and Fluids, 2014, 96: 20–34. DOI: 10.1016/j.compfluid.2014.03.005
[71] Koch D.L., Ladd A.J.C., Moderate Reynolds number flows through periodic and random arrays of aligned cylinders. Journal of Fluid Mechanics, 1997, 349: 31–66. DOI: 10.1017/S002211209700671X
[72] Sarkar S., van der Hoef M.A., Kuipers J.A.M., Fluid-particle interaction from lattice Boltzmann simulations for flow through polydisperse random arrays of spheres. Chemical Engineering Science, 2009, 64(11): 2683–2691. DOI: 10.1016/j.ces.2009.02.045
[73] Yin X., Sundaresan S., Fluid-particle drag in low-reynolds-number polydisperse gas-solid suspensions. AIChE Journal, 2009, 55(6): 1352–1368. DOI: 10.1002/aic.11800
[74] Tenneti S., Garg R., Subramaniam S., Drag law for monodisperse gas-solid systems using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres. International Journal of Multiphase Flow, 2011, 37(9): 1072–1092. DOI: 10.1016/j.ijmultiphaseflow.2011.05.010
[75] Yali Tang Y., Frank Peters E.A.J.F., Hans Kuipers J.A.M., Sebastian Kriebitzsch S.H.L., Martin van der Hoef M.A., A new drag correlation from fully resolved simulations of flow past monodisperse static arrays of spheres. AIChE Journal, 2015, 61(2): 688–698. DOI: 10.1002/aic.14645
[76] Rong L.W., Dong K.J., Yu A.B., Lattice-Boltzmann simulation of fluid flow through packed beds of uniform spheres: Effect of porosity. Chemical Engineering Science, 2013, 99: 44–58. DOI: 10.1016/j.ces.2013.05.036
[77] Rong L.W., Dong K.J., Yu A.B., Lattice-Boltzmann simulation of fluid flow through packed beds of spheres: Effect of particle size distribution. Chemical Engineering Science, 2014, 116: 508–523. DOI: 10.1016/j.ces.2014.05.025
[78] Kravets B., Rosemann T., Reinecke S.R., Kruggel-Emden H., A new drag force and heat transfer correlation derived from direct numerical LBM-simulations of flown through particle packings. Powder Technology, 2019, 345: 438–456. DOI: 10.1016/j.powtec.2019.01.028
[79] Rubinstein G.J., Derksen J.J., Sundaresan S., Lattice Boltzmann simulations of low-Reynolds-number flow past fluidized spheres: Effect of Stokes number on drag force. Journal of Fluid Mechanics, 2016, 788: 576–601. DOI: 10.1017/jfm.2015.679
[80] Duan F., Zhao L., Chen X., Zhou Q., Fluid-particle drag and particle-particle drag in low-Reynolds-number bidisperse gas-solid suspensions. Physics of Fluids, 2020, 32(11): 113311. DOI: 10.1063/5.0023874
[81] Tavanashad V., Passalacqua A., Subramaniam S., Particle-resolved simulation of freely evolving particle suspensions: Flow physics and modeling. International Journal of Multiphase Flow, 2021, 135: 103533. DOI: 10.1016/j.ijmultiphaseflow.2020.103533
[82] Shardt O., Derksen J.J., Direct simulations of dense suspensions of non-spherical particles. International Journal of Multiphase Flow, 2012, 47: 25–36. DOI: 10.1016/j.ijmultiphaseflow.2012.06.007
[83] Rong L.W., Zhou Z.Y., Yu A.B., Lattice-Boltzmann simulation of fluid flow through packed beds of uniform ellipsoids. Powder Technology, 2015, 285: 146–156. DOI: 10.1016/j.powtec.2015.06.047
[84] Chen Y., Müller C.R., Development of a drag force correlation for assemblies of cubic particles: The effect of solid volume fraction and Reynolds number. Chemical Engineering Science, 2018, 192: 1157–1166. DOI: 10.1016/j.ces.2018.08.027
[85] Cao Z., Tafti D.K., Shahnam M., Development of drag correlation for suspensions of ellipsoidal particles. Powder Technology, 2020, 369: 298–310. DOI: 10.1016/j.powtec.2020.05.049
[86] Sanjeevi S.K.P., Padding J.T., Hydrodynamic forces on monodisperse assemblies of axisymmetric elongated particles: Orientation and voidage effects. AIChE Journal, 2020, 66(6): 1–20. DOI: 10.1002/aic.16951
[87] Song S., Rong L., Dong K., Shen Y., Numerical investigation of drag property for fluid flow through random arrays of elliptical cylinders. Powder Technology, 2021, 380: 539–552. DOI: 10.1016/j.powtec.2020.11.003
[88] Wakao N., Kaguei S., Funazkri T., Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed beds. Correlation of nusselt numbers. Chemical Engineering Science, 1979, 34(3): 325–336. DOI: 10.1016/0009-2509(79)85064-2
[89] Tavassoli H., Peters E.A.J.F., Kuipers J.A.M., Direct numerical simulation of fluid-particle heat transfer in fixed random arrays of non-spherical particles. Chemical Engineering Science, 2015, 129: 42–48. DOI: 10.1016/j.ces.2015.02.024
[90] Sun B., Tenneti S., Subramaniam S., Modeling average gas-solid heat transfer using particle-resolved direct numerical simulation. International Journal of Heat and Mass Transfer, 2015, 86: 898–913. DOI: 10.1016/j.ijheatmasstransfer.2015.03.046
[91] He L., Tafti D.K., Heat transfer in an assembly of ellipsoidal particles at low to moderate Reynolds numbers. International Journal of Heat and Mass Transfer, 2017, 114: 324–336. DOI: 10.1016/j.ijheatmasstransfer.2017.06.068
[92] Singhal A., Cloete S., Radl S., Quinta-Ferreira R., Amini S., Heat transfer to a gas from densely packed beds of monodisperse spherical particles. Chemical Engineering Journal, 2017, 314: 27–37. DOI: 10.1016/j.cej.2016.12.124
[93] Singhal A., Cloete S., Radl S., Quinta-Ferreira R., Amini S., Heat transfer to a gas from densely packed beds of cylindrical particles. Chemical Engineering Science, 2017, 172: 1–12. DOI: 10.1016/j.ces.2017.06.003
[94] Dong Y., Sosna B., Korup O., Rosowski F., Horn R., Investigation of radial heat transfer in a fixed-bed reactor: CFD simulations and profile measurements. Chemical Engineering Journal, 2017, 317: 204–214. DOI: 10.1016/j.cej.2017.02.063
[95] Guo Z., Sun Z., Zhang N., Ding M., Influence of confining wall on pressure drop and particle-to-fluid heat transfer in packed beds with small D/d ratios under high Reynolds number. Chemical Engineering Science, 2019, 209: 115200. DOI: 10.1016/j.ces.2019.115200
[96] Chen Y., Müller C.R., Gas-solid heat transfer in assemblies of cubes for ReV≤100. Chemical Engineering Science, 2020, 216: 115478. DOI: 10.1016/j.ces.2020.115478
[97] Chang Q., Yang L., Ge W., Fluid-particle heat transfer in static assemblies: Effect of particle shape. International Journal of Heat and Mass Transfer, 2021, 166: 120730. DOI: 10.1016/j.ijheatmasstransfer.2020.120730
[98] Moghaddam E.M., Foumeny E.A., Stankiewicz A.I., Padding J.T., Heat transfer from wall to dense packing structures of spheres, cylinders and Raschig rings. Chemical Engineering Journal, 2021, 407: 127994. DOI: 10.1016/j.cej.2020.127994
[99] Tang T., He Y., Ren A., Wang T., Experimental study and DEM numerical simulation of Dry/Wet particle flow behaviors in a spouted bed. Industrial and Engineering Chemistry Research, 2019, 58(33): 15353–15367. DOI: 10.1021/acs.iecr.9b02448
[100] Wang T., Tang T., He Y., Yi H., Analysis of particle behaviors using a region-dependent method in a jetting fluidized bed. Chemical Engineering Journal, 2016, 283: 127–140. DOI: 10.1016/j.cej.2015.07.038
[101] Wang T., He Y., Yan S., Kim D.R., Rotation characteristic and granular temperature analysis in a bubbling fluidized bed of binary particles. Particuology, 2015, 18: 76–88. DOI: 10.1016/j.partic.2014.02.011
[102] Luo K., Yang S., Fang M., Fan J., Cen K., LES-DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed. Part I: Hydrodynamics. Powder Technology, 2014, 256: 385–394. DOI: 10.1016/j.powtec.2013.11.039
[103] Yang S., Luo K., Fang M., Fan J., LES-DEM investigation of the solid transportation mechanism in a 3-D bubbling fluidized bed. Part II: Solid dispersion and circulation properties. Powder Technology, 2014, 256: 395–403. DOI: 10.1016/j.powtec.2013.12.049
[104] Yang S., Luo K., Fang M., Zhang K., Fan J., Parallel CFD-DEM modeling of the hydrodynamics in a lab-scale double slot-rectangular spouted bed with a partition plate. Chemical Engineering Journal, 2014, 236: 158–170. DOI: 10.1016/j.cej.2013.09.082
[105] Yang S., Luo K., Fang M., Fan J., Discrete element simulation of the hydrodynamics in a 3D spouted bed: Influence of tube configuration. Powder Technology, 2013, 243: 85–95. DOI: 10.1016/j.powtec.2013.03.041
[106] Liu R.J., Xiao R., Ye M., Liu Z., Analysis of particle rotation in fluidized bed by use of discrete particle model. Advanced Powder Technology, 2018, 29(7): 1655–1663. DOI: 10.1016/j.apt.2018.03.032
[107] Song C., Liu D., Ma J., Chen X., CFD-DEM simulation of flow pattern and particle velocity in a fluidized bed with wet particles. Powder Technology, 2017, 314: 346–354. DOI: 10.1016/j.powtec.2016.10.044
[108] Hilton J.E., Mason L.R., Cleary P.W., Dynamics of gas-solid fluidised beds with non-spherical particle geometry. Chemical Engineering Science, 2010, 65(5): 1584–1596. DOI: 10.1016/j.ces.2009.10.028
[109] Zhou Z.Y., Pinson D., Zou R.P., Yu A.B., Discrete particle simulation of gas fluidization of ellipsoidal particles. Chemical Engineering Science, 2011, 66(23): 6128–6145. DOI: 10.1016/j.ces.2011.08.041
[110] Gan J.Q., Zhou Z.Y., Yu A.B., Micromechanical analysis of flow behaviour of fine ellipsoids in gas fluidization. Chemical Engineering Science, 2017, 163: 11–26. DOI: 10.1016/j.ces.2017.01.020
[111] Kildashti K., Dong K., Samali B., Zheng Q., Yu A., Evaluation of contact force models for discrete modelling of ellipsoidal particles. Chemical Engineering Science, 2018, 177: 1–17. DOI: 10.1016/j.ces.2017.11.004
[112] Vollmari K., Jasevičius R., Kruggel-Emden H., Experimental and numerical study of fluidization and pressure drop of spherical and non-spherical particles in a model scale fluidized bed. Powder Technology, 2016, 291: 506–521. DOI: 10.1016/j.powtec.2015.11.045
[113] Vollmari K., Oschmann T., Kruggel-Emden H., Mixing quality in mono- and bidisperse systems under the influence of particle shape: A numerical and experimental study. Powder Technology, 2017, 308: 101–113. DOI: 10.1016/j.powtec.2016.11.072
[114] Mahajan V. V., Padding J.T., Nijssen T.M.J., Buist K.A., Kuipers J.A.M., Nonspherical particles in a pseudo-2D fluidized bed: Experimental study. AIChE Journal, 2018, 64(5): 1573–1590. DOI: 10.1002/aic.16078
[115] Ren B., Zhong W., Chen Y., Chen X., Jin B., Yuan Z., Lu Y., CFD-DEM simulation of spouting of corn-shaped particles. Particuology, 2012, 10(5): 562–572. DOI: 10.1016/j.partic.2012.03.011
[116] Ma H., Zhao Y., CFD-DEM investigation of the fluidization of binary mixtures containing rod-like particles and spherical particles in a fluidized bed. Powder Technology, 2018, 336: 533–545. DOI: 10.1016/j.powtec.2018.06.034
[117] Zhong W.Q., Zhang Y., Jin B., Zhang M., Discrete element method simulation of cylinder-shaped particle flow in a gas-solid fluidized bed. Chemical Engineering and Technology, 2009, 32(3): 386–391. DOI: 10.1002/ceat.200800516
[118] Ren B., Zhong W., Jin B., Shao Y., Yuan Z., Numerical simulation on the mixing behavior of corn-shaped particles in a spouted bed. Powder Technology, 2013, 234: 58–66. DOI: 10.1016/j.powtec.2012.09.024
[119] Ren B., Zhong W., Jiang X., Jin B., Yuan Z., Numerical simulation of spouting of cylindroid particles in a spouted bed. Canadian Journal of Chemical Engineering, 2014, 92(5): 928–934. DOI: 10.1002/cjce.21900
[120] Gan J.Q., Zhou Z.Y., Yu A.B., Interparticle force analysis on the packing of fine ellipsoids. Powder Technology, 2017, 320: 610–624. DOI: 10.1016/j.powtec.2017.07.064
[121] Vollmari K., Oschmann T., Wirtz S., Kruggel-Emden H., Pressure drop investigations in packings of arbitrary shaped particles. Powder Technology, 2015, 271: 109–124. DOI: 10.1016/j.powtec.2014.11.001
[122] Oschmann T., Vollmari K., Kruggel-Emden H., Wirtz S., Numerical investigation of the mixing of non-spherical particles in fluidized beds and during pneumatic conveying. Procedia Engineering, 2015, 102: 976–985. DOI: 10.1016/j.proeng.2015.01.220
[123] Patil A.V., Peters E.A.J.F., Kolkman T., Kuipers J.A.M., Modeling bubble heat transfer in gas-solid fluidized beds using DEM. Chemical Engineering Science, 2014, 105: 121–131. DOI: 10.1016/j.ces.2013.11.001
[124] Sutkar V.S., Deen N.G., Patil A.V., Salikov V., Antonyuk S., Heinrich S., Kuipers J.A.M., CFD-DEM model for coupled heat and mass transfer in a spout fluidized bed with liquid injection. Chemical Engineering Journal, 2016, 288: 185–197. DOI: 10.1016/j.cej.2015.11.044
[125] Li B., Ma M., Yu Y., Chen C., Zhou Z., Particle scale study on heat transfer of gas-solid spout fluidized bed with hot gas injection. Particulate Science and Technology, 2019, 37(7): 777–786. DOI: 10.1080/02726351.2018.1438547
[126] Wang S., Luo K., Hu C., Fan J., Particle-scale investigation of heat transfer and erosion characteristics in a three-dimensional circulating fluidized bed. Industrial and Engineering Chemistry Research, 2018, 57(19): 6774–6789. DOI: 10.1021/acs.iecr.8b00353
[127] Wang S., Luo K., Hu C., Lin J., Fan J., CFD-DEM simulation of heat transfer in fluidized beds: Model verification, validation, and application. Chemical Engineering Science, 2019, 197: 280–295. DOI: 10.1016/j.ces.2018.12.031
[128] Patil A.V., Peters E.A.J.F., Sutkar V.S., Deen N.G., Kuipers J.A.M., A study of heat transfer in fluidized beds using an integrated DIA/PIV/IR technique. Chemical Engineering Journal, 2015, 259: 90–106. DOI: 10.1016/j.cej.2014.07.107
[129] Zhao Y., Jiang M., Liu Y., Zheng J., Particle-scale simulation of the flow and heat transfer behaviors in fluidized bed with immersed tube. AIChE Journal, 2009, 55(12): 3109–3124. DOI: 10.1002/aic.11956
[130] Di Maio F.P., Di Renzo A., Trevisan D., Comparison of heat transfer models in DEM-CFD simulations of fluidized beds with an immersed probe. Powder Technology, 2009, 193(3): 257–265. DOI: 10.1016/j.powtec.2009.03.002
[131] Wahyudi H., Chu K., Yu A., 3D particle-scale modeling of gas-solids flow and heat transfer in fluidized beds with an immersed tube. International Journal of Heat and Mass Transfer, 2016, 97: 521–537. DOI: 10.1016/j.ijheatmasstransfer.2016.02.038
[132] Hou Q.F., Zhou Z.Y., Yu A.B., Gas-solid flow and heat transfer in fluidized beds with tubes: Effects of material properties and tube array settings. Powder Technology, 2016, 296: 59–71. DOI: 10.1016/j.powtec.2015.03.028
[133] Bellan S., Matsubara K., Cho H.S., Gokon N., Kodama T., A CFD-DEM study of hydrodynamics with heat transfer in a gas-solid fluidized bed reactor for solar thermal applications. International Journal of Heat and Mass Transfer, 2018, 116: 377–392. DOI: 10.1016/j.ijheatmasstransfer.2017.09.015
[134] Bellan S., Kodama T., Matsubara K., Gokon N., Cho H.S., Inoue K., Thermal performance of a 30 kW fluidized bed reactor for solar gasification: A CFD-DEM study. Chemical Engineering Journal, 2019, 360: 1287–1300. DOI: 10.1016/j.cej.2018.10.111
[135] Zhang K., Wang S., Li B., He Y., Zhao Y., Heat transfer in a pulsed fluidized bed by using coupled CFD-DEM method. Powder Technology, 2020, 367: 497–505. DOI: 10.1016/j.powtec.2020.04.013
[136] Li H.W., Wang L., Wang T., Du C.H., Experimental and CFD-DEM numerical evaluation of flow and heat transfer characteristics in mixed pulsed fluidized beds. Advanced Powder Technology, 2020, 31(8): 3144–3157. DOI: 10.1016/j.apt.2020.06.004
[137] Liang X., Liu X.J., Xia D., Numerical investigation of the gas-solid heat transfer characteristics of packed multi-size particles. International Journal of Heat and Mass Transfer, 2020, 149: 119237. DOI: 10.1016/j.ijheatmasstransfer.2019.119237
[138] Gan J., Zhou Z., Yu A., Particle scale study of heat transfer in packed and fluidized beds of ellipsoidal particles. Chemical Engineering Science, 2016, 144: 201–215. DOI: 10.1016/j.ces.2016.01.041
[139] Wei G., Zhang H., An X., Jiang S., Influence of particle shape on microstructure and heat transfer characteristics in blast furnace raceway with CFD-DEM approach. Powder Technology, 2020, 361: 283–296. DOI: 10.1016/j.powtec.2019.08.021
[140] Wei G., Zhang H., An X., E.D., Numerical investigation on the mutual interaction between heat transfer and non-spherical particle dynamics in the blast furnace raceway. International Journal of Heat and Mass Transfer, 2020, 153: 119577. DOI: 10.1016/j.ijheatmasstransfer.2020.119577
[141] Liu D., Chen X., Zhou W., Zhao C., Simulation of char and propane combustion in a fluidized bed by extending DEM-CFD approach. Proceedings of the Combustion Institute, 2011, 33(2): 2701–2708. DOI: 10.1016/j.proci.2010.06.070
[142] Hu C., Luo K., Wang S., Sun L., Fan J., Influences of operating parameters on the fluidized bed coal gasification process: A coarse-grained CFD-DEM study. Chemical Engineering Science, 2019, 195: 693–706. DOI: 10.1016/j.ces.2018.10.015
[143] Yang S., Wang H., Wei Y., Hu J., Chew J.W., Numerical investigation of bubble dynamics during biomass gasification in a bubbling fluidized bed. ACS Sustainable Chemistry and Engineering, 2019, 7(14): 12288–12303. DOI: 10.1021/acssuschemeng.9b01628
[144] Kim H., Arastoopour H., Extension of kinetic theory to cohesive particle flow. Powder Technology, 2002, 122(1): 83–94. DOI: 10.1016/S0032-5910(01)00395-3
[145] Tartan M., Gidaspow D., Measurement of granular temperature and stresses in risers. AIChE Journal, 2004, 50(8): 1760–1775. DOI: 10.1002/aic.10192
[146] Jung J., Gidaspow D., Gamwo I.K., Measurement of two kinds of granular temperatures, stresses, and dispersion in bubbling beds. Industrial and Engineering Chemistry Research, 2005, 44(5): 1329–1341. DOI: 10.1021/ie0496838
[147] Zhao Y., Lu B., Zhong Y., Euler-Euler modeling of a gas-solid bubbling fluidized bed with kinetic theory of rough particles. Chemical Engineering Science, 2013, 104: 767–779. DOI: 10.1016/j.ces.2013.10.001
[148] Liu X., Jiang Y., Liu C., Wang W., Li J., Hydrodynamic modeling of gas-solid bubbling fluidization based on energy-minimization multiscale (EMMS) theory. Industrial and Engineering Chemistry Research, 2014, 53(7): 2800–2810. DOI: 10.1021/ie4029335
[149] Wang X., Li Y., Zhu T., Jing P., Wang J., Simulation of the heterogeneous semi-dry flue gas desulfurization in a pilot CFB riser using the two-fluid model. Chemical Engineering Journal, 2015, 264: 479–486. DOI: 10.1016/j.cej.2014.11.038
[150] Zhou Q., Wang J., Li J., Three-dimensional simulation of dense suspension upflow regime in high-density CFB risers with EMMS-based two-fluid model. Chemical Engineering Science, 2014, 107: 206–217. DOI: 10.1016/j.ces.2013.12.020
[151] Bokkers G.A., Van Sint Annaland M., Kuipers J.A.M., Mixing and segregation in a bidisperse gas-solid fluidised bed: A numerical and experimental study. Powder Technology, 2004, 140(3): 176–186. DOI: 10.1016/j.powtec.2004.01.018
[152] McKeen T., Pugsley T., Simulation and experimental validation of a freely bubbling bed of FCC catalyst. Powder Technology, 2003, 129(1–3): 139–152. DOI: 10.1016/S0032-5910(02)00294-2
[153] Wang X., Jiang F., Lei J., Wang J., Wang S., Xu X., Xiao Y., A revised drag force model and the application for the gas-solid flow in the high-density circulating fluidized bed. Applied Thermal Engineering, 2011, 31(14–15): 2254–2261. DOI: 10.1016/j.applthermaleng.2011.03.019
[154] Shah M.T., Utikar R.P., Tade M.O., Pareek V.K., Evans G.M., Simulation of gas-solid flows in riser using energy minimization multiscale model: Effect of cluster diameter correlation. Chemical Engineering Science, 2011, 66(14): 3291–3300. DOI: 10.1016/j.ces.2011.01.056
[155] Wang S., Zhao G.B., Liu G.D., Lu H.L., Zhao F.X., Zhang T.Y., Hydrodynamics of gas-solid risers using cluster structure-dependent drag model. Powder Technology, 2014, 254: 214–227. DOI: 10.1016/j.powtec.2013.12.036
[156] Wang S., Liu G.D., Lu H.L., Xu P.F., Yang Y.C., Gidaspow D., A cluster structure-dependent drag coefficient model applied to risers. Powder Technology, 2012, 225: 176–189. DOI: 10.1016/j.powtec.2012.04.006
[157] Shi Z., Wang W., Li J., A bubble-based EMMS model for gas-solid bubbling fluidization. Chemical Engineering Science, 2011, 66(22): 5541–5555. DOI: 10.1016/j.ces.2011.07.020
[158] Lungu M., Zhou Y., Wang J., Yang Y., A CFD study of a bi-disperse gas-solid fluidized bed: Effect of the EMMS sub grid drag correction. Powder Technology, 2015, 280: 154–172. DOI: 10.1016/j.powtec.2015.04.032
[159] Qin Z., Zhou Q., Wang J., An EMMS drag model for coarse grid simulation of polydisperse gas-solid flow in circulating fluidized bed risers. Chemical Engineering Science, 2019, 207: 358–378. DOI: 10.1016/j.ces.2019.06.037
[160] Zhang N., Lu B., Wang W., Li J., 3D CFD simulation of hydrodynamics of a 150 MWe circulating fluidized bed boiler. Chemical Engineering Journal, 2010, 162(2): 821–828. DOI: 10.1016/j.cej.2010.06.033
[161] Lu B., Zhang N., Wang W., Li J., Chiu J.H., Kang S.G., 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler. AIChE Journal, 2013, 59(4): 1108–1117. DOI: 10.1002/aic.13917
[162] Lu B., Zhang J., Luo H., Wang W., Li H., Ye M., Liu Z., Li J., Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors. Chemical Engineering Science, 2017, 171: 244–255. DOI: 10.1016/j.ces.2017.05.007
[163] Dong N.H., Armstrong L.M., Gu S., Luo K.H., Effect of tube shape on the hydrodynamics and tube-to-bed heat transfer in fluidized beds. Applied Thermal Engineering, 2013, 60(1–2): 472–479. DOI: 10.1016/j.applthermaleng.2012.08.018
[164] Yusuf R., Halvorsen B., Melaaen M.C., Eulerian-Eulerian simulation of heat transfer between a gas-solid fluidized bed and an immersed tube-bank with horizontal tubes. Chemical Engineering Science, 2011, 66(8): 1550–1564. DOI: 10.1016/j.ces.2010.12.015
[165] Chang J., Wang G., Gao J., Zhang K., Chen H., Yang Y., CFD modeling of particle-particle heat transfer in dense gas-solid fluidized beds of binary mixture. Powder Technology, 2012, 217: 50–60. DOI: 10.1016/j.powtec.2011.10.008
[166] Lungu M., Wang J., Yang Y., Numerical simulations of flow structure and heat transfer in a central jet bubbling fluidized bed. Powder Technology, 2015, 269: 139–152. DOI: 10.1016/j.powtec.2014.08.067
[167] Wang L., Sun J., Numerical simulation of radiation heat transfer characteristics in a cylindrical fluidized bed. Heat and Mass Transfer, 2020, 56(7): 2025–2034. DOI: 10.1007/s00231-020-02822-z
[168] Wang S.Y., Liu G.D., Wu Y.B., Chen J.H., Liu Y.J., Wei L.X., Numerical investigation of gas-to-particle cluster convective heat transfer in circulating fluidized beds. International Journal of Heat and Mass Transfer, 2010, 53(15–16): 3102–3110. DOI: 10.1016/j.ijheatmasstransfer.2010.03.017
[169] Wang L., Wei G., Jiang J., Duan S., Xu L., Yuan W., Hou Q., Experimental and numerical investigation of particle flow and mixing characteristics in an internally circulating fluidized bed. Journal of Chemical Engineering of Japan, 2019, 52(1): 89–98. DOI: 10.1252/jcej.18we014
[170] Liu X., Zhang H., Hong H., Reduction kinetics of Fe-based oxygen carriers using syngas in a honeycomb fixed-bed reactor for chemical-looping combustion. Journal of Thermal Science, 2020, 29(1): 13–24. DOI: 10.1007/s11630-020-1255-9
[171] Kruggel-Emden H., Rickelt S., Stepanek F., Munjiza A., Development and testing of an interconnected multiphase CFD-model for chemical looping combustion. Chemical Engineering Science, 2010, 65(16): 4732–4745. DOI: 10.1016/j.ces.2010.05.022
[172] Mahalatkar K., Kuhlman J., Huckaby E.D., O’Brien T., CFD simulation of a chemical-looping fuel reactor utilizing solid fuel. Chemical Engineering Science, 2011, 66(16): 3617–3627. DOI: 10.1016/j.ces.2011.04.025
[173] Mahalatkar K., Kuhlman J., Huckaby E.D., O’Brien T., Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels. Chemical Engineering Science, 2011, 66(3): 469–479. DOI: 10.1016/j.ces.2010.11.003
[174] Deng Z., Xiao R., Jin B., Song Q., Huang H., Multiphase CFD modeling for a chemical looping combustion process (fuel reactor). Chemical Engineering and Technology, 2008, 31(12): 1754–1766. DOI: 10.1002/ceat.200800341
[175] Gerber S., Behrendt F., Oevermann M., An Eulerian modeling approach of wood gasification in a bubbling fluidized bed reactor using char as bed material. Fuel, 2010, 89(10): 2903–2917. DOI: 10.1016/j.fuel.2010.03.034
[176] Deng Z., Xiao R., Jin B., Huang H., Shen L., Song Q., Li Q., Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed. Energy and Fuels, 2008, 22(3): 1560–1569. DOI: 10.1021/ef7007437
[177] Iggland M., Leion H., Mattisson T., Lyngfelt A., Effect of fuel particle size on reaction rate in chemical looping combustion. Chemical Engineering Science, 2010, 65(22): 5841–5851. DOI: 10.1016/j.ces.2010.08.001
[178] Sun J., Yan Y., Non-intrusive measurement and hydrodynamics characterization of gas-solid fluidized beds: A review. Measurement Science and Technology, 2016, 27(11): 112001. DOI: 10.1088/0957-0233/27/11/112001