[1]
Bianchi N., Bolognani S., Luise F., Potentials and limits of high-speed PM motors. IEEE Transactions on Industry Applications, 2004, 40(6): 1570–1578.
[2]
Borisavljevic A., Polinder H., Ferreira J.A., On the speed limits of permanent-magnet machines. IEEE Transactions on Industrial Electronics, 2009, 57(1): 220–227.
[3]
Gerada D., Mebarki A., Brown N.L., et al., High-speed electrical machines: Technologies, trends, and developments. IEEE Transactions on Industrial Electronics, 2013, 61(6): 2946–2959.
[4]
Uzhegov N., Kurvinen E., Nerg J., et al., Multidisciplinary design process of a 6-slot 2-pole high-speed permanent-magnet synchronous machine. IEEE Transactions on Industrial Electronics, 2016, 63(2): 784–795.
[5]
Du G., Xu W., Zhu J., Huang N., Effects of design parameters on the multiphysics performance of high-speed permanent magnet machines. IEEE Transactions on Industrial Electronics, 2019, 67(5): 3472–3483.
[6]
Uzhegov N., Smirnov A., Park C.H., et al., Design aspects of high-speed electrical machines with active magnetic bearings for compressor applications. IEEE Transactions on Industrial Electronics, 2017, 64(11): 8427–8436.
[7]
Tenconi A., Vaschetto S., Vigliani A., Electrical machines for high-speed applications: Design considerations and tradeoffs. IEEE Transactions on Industrial Electronics, 2014, 61(6): 3022–3029.
[8]
Zhang F., Du G., Wang T., et al., Electromagnetic design and loss calculations of a 1.12-MW high-speed permanent-magnet motor for compressor applications. IEEE Transactions on Energy Conversion, 2015, 31(1): 132–140.
[9]
Ede J. D., Zhu Z., Howe D., Rotor resonances of high-speed permanent-magnet brushless machines. IEEE Transactions on Industry Applications, 2002, 38(6): 1542–1548.
[10]
Huang Z., Fang J., Multiphysics design and optimization of high-speed permanent-magnet electrical machines for air blower applications. IEEE Transactions on Industrial Electronics, 2016, 63(5): 2766–2774.
[11]
Fang H., Qu R., Li J., et al., Rotor design for high-speed high-power permanent-magnet synchronous machines. IEEE Transactions on Industry Applications, 2017, 53(4): 3411–3419.
[12]
Wang Y., Zhu Z., Feng J., et al., Rotor stress analysis of high-speed permanent magnet machines with segmented magnets retained by carbon-fibre sleeve. IEEE Transactions on Energy Conversion, 2020, 36(2): 971–983.
[13]
Li W., Qiu H., Zhang X., et al., Influence of rotor-sleeve electromagnetic characteristics on high-speed permanent-magnet generator. IEEE Transactions on Industrial Electronics, 2013, 61(6): 3030–3037.
[14]
Hong D.K., Woo B.C., Koo D.H., Rotordynamics of 120 000 r/min 15 kW ultra high speed motor. IEEE transactions on magnetics, 2009, 45(6): 2831–2834.
[15]
Zhang Y., McLoone S., Cao W., et al., Power loss and thermal analysis of a MW high-speed permanent magnet synchronous machine. IEEE Transactions on Energy Conversion, 2017, 32(4): 1468–1478.
[16]
Li W., Zhang X., Cheng S., Cao J., Thermal optimization for a HSPMG used for distributed generation systems. IEEE Transactions on Industrial Electronics, 2012, 60(2): 474–482.
[17]
Huang Z., Fang J., Liu X., Han B., Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines. IEEE Transactions on Industrial Electronics, 2015, 63(4): 2027–2035.
[18]
Du G., Xu W., Zhu J., Huang N., Power loss and thermal analysis for high-power high-speed permanent magnet machines. IEEE Transactions on Industrial Electronics, 2020, 67(4): 2722–2733.
[19]
Ismagilov F.R., Uzhegov N., Vavilov V.E., et al., Multidisciplinary design of ultra-high-speed electrical machines. IEEE Transactions on Energy Conversion, 2018, 33(3): 1203–1212.
[20]
Yang J., Liu P., Ye C., et al., Multidisciplinary design of high-speed solid rotor homopolar inductor machine for flywheel energy storage system. IEEE Transactions on Transportation Electrification, 2020, 7(2): 485–496.
[21]
Zheng M., Huang W., Gao C., Rotor stress and dynamics analysis of a high-speed permanent magnet machine for a micro gas turbine considering multiphysics factors. IEEE Access, 2020, 8: 152523–152531.
[22]
Pyrhonen J., Jokinen T., Hrabovcova V., Design of rotating electrical machines, second ed., Chichester: Wiley, U.K., 2013.
[23]
Vrancik J.E., Prediction of windage power loss in alternators. National Aeronautics and Space Administration, 1968.
[24]
Bilgen E., Boulos R., Functional dependence of torque coefficient of coaxial cylinders on gap width and Reynolds numbers. Journal of Fluids Engineering, Transactions of the ASME, 1973, 95: 122–126.
[25]
Gieras J.F., Design of permanent magnet brushless motors for high speed applications. 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 2014, pp: 1–16.