Aerothermodynamics

Control of Snow Falling Flow around NACA0015 Blade using a Plasma Electrode with Weather Resistant Design

  • MATSUDA Hisashi ,
  • CHIBA Takahiro ,
  • YAGAMI Masaki ,
  • TAJIMA Yusuke ,
  • WATANABE Nobuyoshi ,
  • SATO Hideaki ,
  • TAKEYAMA Masafumi
Expand
  • 1. Hokkaido University of Science, Hokkaido 006-8585, Japan
    2. Asahi Rubber Inc., Saitama 330-0801, Japan

Online published: 2023-11-30

Copyright

Science Press, Institute of Engineering Thermophysics, CAS and Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

The plasma actuation (PA) effect on the snow falling flow was investigated using a plasma electrode with weather resistant design and the natural snow wind facility of the Hokkaido University of Science. NACA0015 test blade with chord length c of 300 mm was used. Wind tunnel tests were carried out under the angle of the attack of the blade was fixed at 15 degrees, and the main flow velocity is U=5 m/s. PIV (Particle image velocimetry) measurements were conducted on various PA conditions using natural dry snowflakes as a tracer. When the actuator was driven under the condition of the fundamental frequency of F=50 kHz, and the pulsed modulated frequency f of fc/U=1 and Duty ratio (Ratio of plasma ON time to pulse duration time) =1%, movement of snowflakes was controlled the most effectively tested. It was clarified that the fundamental frequency of PA also affects the control of snow flow. Under snowfall conditions, the weather resistant designed plasma electrode has suffered no damage and operated successfully.

Cite this article

MATSUDA Hisashi , CHIBA Takahiro , YAGAMI Masaki , TAJIMA Yusuke , WATANABE Nobuyoshi , SATO Hideaki , TAKEYAMA Masafumi . Control of Snow Falling Flow around NACA0015 Blade using a Plasma Electrode with Weather Resistant Design[J]. Journal of Thermal Science, 2022 , 31(1) : 72 -81 . DOI: 10.1007/s11630-022-1542-8

References

[1] Zhu C., Wang T., Chen J., Zhong W., Effect of single-row and double-row passive vortex generators on the deep dynamic stall of a wind turbine airfoil. Energies, 2020, 13(10): 2535.
[2] Gonzalez A.G., Enevolden P.B., Barlas A., Madsen H.A., Field test of an active flap system on a full-scale wind turbine. Wind Energy Science, 2021, 6: 33–43. 
[3] Akhter M.Z., Omar F.K., Review of flow-control devices for wind-turbine performance enhancement. Energies, 2021, 14(5): 1268. 
[4] Patel M.P., Vasudevan S., Nelson R.C., Corke T.C., Plasma aerodynamic control effectors for improved wind turbine performance. Phase I SBIR Final Report, Grant No.DE-FG02-07ER84781, 2008.
[5] Matsuda H., Tanaka M., Osako T., Yamazaki K., Shimura N., Asayama M., Kamada Y., Maeda T., Oryu Y., Development of high performance wind turbine using plasma actuation technology. Grand Renewable Energy 2014 Proceedings, Tokyo, Japan, 2014, O-Wd-4-3: 1–4. 
[6] Jukes T.N., Smart control of a horizontal axis wind turbine using dielectric barrier discharge plasma actuators. Renewable Energy, 2015, 80: 644–654. 
[7] Matsuda H., Tanaka M., Osako T., Yamazaki K., Shimura N., Asayama M., Oryu Y., Plasma actuation effect on a MW class wind turbine. International Journal of Gas Turbine. Propulsion and Power Systems, 2017, 9(1): 47–52.
[8] Huang C.H., Dai Y., Yang C., Wu Y., Xia Y., Effect of dielectric barrier discharge plasma actuator on the dynamic moment behavior of pitching airfoil at low Reynolds number. Physics of Fluids, 2021, 33(4): 043603.
[9] Aono H., Fukumoto H., Abe Y., Sato M., Nonomura T., Fujii K., Separated flow control of small horizontal-axis wind turbine blades using dielectric barrier discharge plasma actuators. Energies, 2020, 13: 1218. 
[10] Zhang X., Huang Y., Wang X., Wang W., Tang K., Li, H., Turbulent boundary layer separation control using plasma actuator at Reynolds number 2000 000. Chinese Journal of Aeronautics, 2016, 29(5): 1237–1246. 
[11] Tanaka M., Kubo N., Kawabata H., Plasma actuation for leading edge separation control on 300 kW rotor blades with chord length around 1 m at a Reynolds number around 1.6×106. Journal of Physics: Conference Series, 2020, 1618(05): 052013.
[12] Baring-Gould I., Tallhang L., Ronten G., Horbaty R., Cattin R., Laakso T., Durstewitz M., Lacroix A., Peltola E., Wallenius T., Recommendations for wind energy projects in cold climates. VTT Working Papers 151, 2009: 1–62.
[13] Van den Broecke J., De-icing using NS-DBD plasma actuators. Master of Science Thesis, Faculty of Aerospace Engineering, Delft University of Technology, 2016.
[14] Kolbakir C., Liu Y., Hu H., Starikovskiy A.Y., Miles R., An experimental investigation on the thermal effects of NS-DBD and AC-DBD plasma actuators for aircraft icing mitigation. AIAA SciTech Forum, Kissimmee, Florida, AIAA Aerospace Sciences Meeting, Jan 8–12, 2018. DOI:10.2514/6.2018-0164.
[15] Tian Y., Zhang Z., Cai J., Yang L., Kang L., Experimental study of an anti-icing method over an air foil based on pulsed dielectric barrier discharge plasma. Chinese Journal of Aeronautics, 2018, 31(7): 1449–1460. DOI:10.1016/j.cja.2018.05.008.
[16] Matsuda H., Uchida T., Tanaka M., Otomo F., Simura N., Osako T., Phase-locked PIV measurement on flow around plasma actuated 2D wind turbine blade. Journal of Gas Turbine Society of Japan, 2014, 42(6): 535–540. (in Japanese)

Outlines

/