[1] Emmons H.W., Pearson C.E., Grant H.P., Compressor surge and stall propagation. Transactions of the ASME, New York, USA, 1955, 77: 455–469.
[2] Stenning A.H., Rotating stall and surge. ASME Journal of Fluids Engineering, 1980, 102(1): 14–20.
[3] Moore F.K., Greitzer E.M., A theory of post-stall transients in axial compression systems: part I― development of equations. ASME Journal of Engineering for Gas Turbines and Power. 1986, 108(1): 68–76.
[4] Sun X., On the relation between the inception of rotating stall and casing treatment. 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, USA, 1996, AIAA-1996-2576.
DOI: https://doi.org/10.2514/6.1996-2579.
[5] Sun X., Sun D., Yu W., A model to predict stall inception of transonic axial flow fan/compressors. Chinese Journal of Aeronautics, 2011, 24(6): 687–700.
[6] Liu X., Sun D., Sun X., Wang X., Flow stability model for fan/compressors with annular duct and novel casing treatment. Chinese Journal of Aeronautics, 2012, 25(2): 143–154.
[7] Sun X., Liu X., Hou R., Sun D., A general theory of flow-instability inception in turbomachinery. AIAA Journal, 2013, 51(7): 1675–1687.
[8] Liu X., Hou R., Sun D., Sun X., Flow instability inception model of compressors based on eigenvalue theory. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Atlanta, USA, 2012, AIAA 2012-4156. DOI: https://doi.org/10.2514/6.2012-4156.
[9] Xu D., He C., Sun D., Sun X., Stall inception prediction of axial compressors with radial inlet distortions. Aerospace Science and Technology, 2021, 109: 106433. DOI: https://doi.org/10.1016/j.ast.2020.106433.
[10] Guo J., Hu J., Wang X., Tu B., Efficient modeling of an axial compressor with swirl distortion. Journal of Thermal Science, 2021, 30(4): 1421–1434.
[11] Bansod P., Bradshaw P., The flow in S-shaped ducts. Aeronautical Quarterly, 1972, 23(2): 131–140.
[12] Vakili A., Wu J., Liver P., Bhat M., Measurements of compressible secondary flow in a circular S-duct. AIAA 16th Fluid and Plasma Dynamics Conference, Danvers, USA, 1983, AIAA 1983-1739.
DOI: https://doi.org/10.2514/6.1983-1739.
[13] Vakili A., Wu J., Hingst W., et al., Comparison of experimental and computational compressible flow in an S-duct. AIAA 22nd Aerospace Sciences Meeting, Reno, USA, 1984, AIAA 1984-33.
DOI: https://doi.org/10.2514/6.1984-33.
[14] Guo R., Seddon J., An investigation of the swirl in an S-duct. Aeronautical Quarterly, 1982, 33(1): 25–58.
[15] Wellborn S.R., Reichert B.A., Okiishi T.H., Study of the compressible flow in a diffusing S-duct. Journal of Propulsion and Power, 1994, 10(5): 668–675.
[16] Wellborn S.R., Reichert B.A., Okiishi T.H., An experimental investigation of the flow in a diffusing S-duct. 28th Joint Propulsion Conference and Exhibit, Nashiville, USA, 1992, AIAA 1992-3622. DOI: https://doi.org/10.2514/6.1992-3622.
[17] Wendt B.J., Reichert B.A., The effects of vortex ingestion on the flow in a diffusing S-duct. 30th Joint Propulsion Conference and Exhibit, Indianapolis, USA, 1994, AIAA 1994-2811. DOI: https://doi.org/10.2514/6.1994-2811.
[18] Zachos P.K., MacManus D.G., Gil-Prieto D., Chiereghin N., Flow distortion measurements in convoluted aeroengine intakes. AIAA Journal, 2016, 54(9): 2819–2832.
[19] Gil-Prieto D., MacManus D.G., Zachos P.K., Tanguy G., Wilson F., Chiereghin N., Delayed detached-eddy simulation and particle image velocimetry investigation of S-duct flow distortion. AIAA Journal, 2017, 55(6): 1893–1908.
[20] McLelland G., MacManus D.G., Zachos P.K., Gil-Prieto D., Migliorini M., Influence of upstream total pressure profiles on S-duct intake flow distortion. Journal of Propulsion and Power, 2020, 36(3): 346–356.
[21] A methodology for assessing inlet swirl distortion, Automotive Engineers Aerospace Information Rept. AIR 5686. S-16 Turbine Engine Inlet Flow Distortion Committee, Warrendale, USA, 2007.
[22] Aulehla F., Intake swirl - a major disturbance parameter in engine/intake compatibility. 13th Congress of the International Council of the Aeronautical Sciences AIAA Aircraft Systems and Technology Conference, Seattle, USA, 1982, 2: 1415–1424.
[23] Epps B.P., Review of vortex identification methods. 55th AIAA Aerospace Sciences Meeting, Grapevine, USA, 2017, AIAA 2017-0989.
DOI: https://doi.org/10.2514/6.2017-0989.
[24] Lee C.C., Boedicker C., Subsonic diffuser design and performance for advanced fighter aircraft. Aircraft Design Systems and Operations Meeting, Colorado Springs, USA, 1985, AIAA 1985-3073.
DOI: https://doi.org/10.2514/6.1985-3073.
[25] Harloff G.J., Reichert B.A., Wellborn S.R., Navier-Stokes analysis and experimental data comparison of compressible flow in a diffusing S-duct. 10th Applied Aerodynamics Conference, Palo Alto, USA, 1992, AIAA-92-2699-CP.
DOI: https://doi.org/10.2514/6.1992-2699.
[26] Fiola C., Agarwal R.K., Simulation of secondary and separated flow in a diffusing S-duct. 52nd Aerospace Sciences Meeting, National Harbor, USA, 2014, AIAA-2014-0561.
DOI: https://doi.org/10.2514/6.2014-0561.
[27] Towne C.E., Schum E.F., Application of computational fluid dynamics to complex inlet ducts. AIAA/SAE/ASME/ASEE 21st Joint Propulsion Conference, Monterey, USA, 1985, AIAA-85-1213.
DOI: https://doi.org/10.2514/6.1985-1213.
[28] Sun X., Liu X., Hou R., Sun D., A general theory of flow instability inception in turbomachinery. AIAA Journal, 2013, 51(7): 1675–1687.
[29] Liu X., Sun D., Sun X., Basic studies of flow-instability inception in axial compressors using eigenvalue method. ASME Journal of Fluids Engineering, 2014, 136(3): 031102. DOI: https://doi.org/10.1115/1.4026417.
[30] Sun X., Ma Y., Liu X., Sun D., Flow stability model of centrifugal compressors based on eigenvalue approach. AIAA Journal, 2016, 54(8): 2361–2376.
[31] Cheng F., Sun D., Dong X., Sun X., Prediction of stall inception in multi-stage compressors based on an eigenvalue theory. Science China Technological Sciences, 2017, 60(8): 1132–1143.
[32] Liu L., Song Y., Chen H., Chen F., Investigation on effect of S-shaped inlet optimization to internal flow characteristic and aerodynamic performance. Journal of Engineering Thermophysics, 2015, 36(1): 50–54.