[1] Peters N., Turbulent combustion. Cambridge University Press, Cambridge, 2000.
[2] Xie Y., Wang J., Xu N., et al., Thermal and chemical effects of water addition on laminar burning velocity of syngas. Energy & Fuels, 2014, 28(5): 3391–3398.
[3] Chakraborty N., Alwazzan D., Klein M., et al., On the validity of Damköhler’s first hypothesis in turbulent Bunsen burner flames: A computational analysis. Proceedings of the Combustion Institute, 2019, 37(2): 2231–2239.
[4] Snegirev A.Y., Kuznetsov E.A., Korobeinichev O.P., et al., Ignition and burning of the composite sample impacted by the Bunsen burner flame: A fully coupled simulation. Fire Safety Journal, 2022, 127: 103507.
[5] Tamadonfar P., Gülder Ö.L., Experimental investigation of the inner structure of premixed turbulent methane/air flames in the thin reaction zones regime. Combustion and Flame, 2015, 162(1): 115–128.
[6] Fragner R., Mazellier N., Halter F., et al., Multi-scale high intensity turbulence generator applied to a high pressure turbulent burner. Flow, Turbulence and Combustion, 2014, 94(1): 263–283.
[7] Skiba A., Wabel T., Temme J., et al., Measurements to determine the regimes of turbulent premixed flames. 51st AIAA/SAE/ASEE Joint Propulsion Conference. 2015, AIAA 2015-4089.
[8] Marshall A., Venkateswaran P., Noble D., et al., Development and characterization of a variable turbulence generation system. Experiments in Fluids, 2011, 51(3): 611–620.
[9] Wang J., Yu Q., Zhang W., et al., Development of a turbulence scale controllable burner and turbulent flame structure analysis. Experimental Thermal and Fluid Science, 2019, 109: 109898.
[10] Damkohler G., The effect of turbulence on the flame velocity in gas mixtures. Zeitschrift fuer Elektrochemie und, 1947, 46(11): 601–626.
[11] Klimov A., Premixed turbulent flames—Interplay of hydrodynamic and chemical phenomena. Flames, Lasers, and Reactive Systems, 1983, 1: 133–146.
[12] Bradley D., How fast can we burn? Symposium (International) on Combustion, 1992, 24: 247–262.
[13] Tanahashi M., Fujimura M., Miyauchi T., Coherent fine-scale eddies in turbulent premixed flames. Proceedings of the Combustion Institute, 2000, 28(1): 529–535.
[14] Fogla N., Creta F., Matalon M., The turbulent flame speed for low-to-moderate turbulence intensities: Hydrodynamic theory vs. experiments. Combustion and Flame, 2017, 175: 155–169.
[15] Duwig C., Nogenmyr K. J., Chan C., et al., Large Eddy Simulations of a piloted lean premix jet flame using finite-rate chemistry. Combustion Theory and Modelling, 2011, 15: 537–568.
[16] Luo G., Dai H., Dai L., et al., Review on large eddy simulation of turbulent premixed combustion in tubes. Journal of Thermal Science, 2020, 29(4): 853–867.
[17] Nogenmyr K.J., Petersson P., Bai X.S., et al., Structure and stabilization mechanism of a stratified premixed low swirl flame. Proceedings of the Combustion Institute, 2011, 33(1): 1567–1574.
[18] Zhang M., Wang J., Xie Y., et al., Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames. Experimental Thermal and Fluid Science, 2014, 52: 288–296.
[19] Wang W., Liang X., Chen N., An experimental study on 3-D flow in an annular cascade of high turning angle turbine blades. Journal of Thermal Science, 1994, 3(2): 82–92.
[20] Zhang W., Wang J., Lin W., et al., Effect of differential diffusion on turbulent lean premixed hydrogen enriched flames through structure analysis. International Journal of Hydrogen Energy, 2020, 45(18): 10920–10931.
[21] Tamadonfar P., Gülder Ö.L., Effect of burner diameter on the burning velocity of premixed turbulent flames stabilized on Bunsen-type burners. Experimental Thermal and Fluid Science, 2016, 73: 42–48.
[22] Barrett M.J., Hollingsworth D.K., On the calculation of length scales for turbulent heat transfer correlation. Journal of Heat Transfer, 2001, 123(5): 878–883.
[23] Barsi D., Costa C., Lengani D., et al., Large eddy simulation of the by-pass transition process under different inlet turbulence conditions. Journal of Thermal Science, 2021, 30(6): 2112–2121.
[24] Lu H., Liu F., Wang Y., et al., The effect of different reaction mechanisms on combustion simulation of a reverse-flow combustor. Journal of Thermal Science, 2020, 29(3): 793–812.
[25] Smagorinsky J., General circulation experiments with the primitive equations. Monthly Weather Review, 1963, 91: 99–164.
[26] Lilly D.K., Representation of small scale turbulence in numerical simulation experiments. Proceedings of IBM Scientific Computing Symposium on Environmental Sciences, 1966, pp. 195–210.
[27] Butler T.D., Orourke P.J., Numerical method for two-dimensional unsteady reacting flows. Symposium on Combustion, 1977, 16(1): 1503–1515.
[28] Charlette F., Meneveau C., Veynante D., A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combustion and Flame, 2002, 131(1): 159–180.
[29] Charlette F., Meneveau C., Veynante D., A power-law flame wrinkling model for LES of premixed turbulent combustion Part II: dynamic formulation. Combustion and Flame, 2002, 131(1): 181–197.
[30] Guo S., Wang J., Wei X., et al., Numerical simulation of premixed combustion using the modified dynamic thickened flame model coupled with multi-step reaction mechanism. Fuel, 2018, 233: 346–353.
[31] Durand L., Polifke W., Implementation of the thickened flame model for large eddy simulation of turbulent premixed combustion in a commercial solver. ASME Turbo Expo 2007: Power for Land, Sea, and Air. 2007. Montreal, Paper No: GT2007-28188, pp. 869–878.
[32] Colin O., Ducros F., Veynante D., et al., A thickened flame model for large eddy simulations of turbulent premixed combustion. Physics of Fluids, 2000, 12(7): 1843–1863.
[33] Franzelli B., Riber E., Gicquel L.Y.M., et al., Large eddy simulation of combustion instabilities in a lean partially premixed swirled flame. Combustion and Flame, 2012, 159(2): 621–637.
[34] Hunt J., Wray A., Moin P., Eddies, streams, and convergence zones in turbulent flows. Studying Turbulence Using Numerical Simulation Databases, 1988, 1: 193–208.
[35] Patyal A., Matalon M., Influences of the Darrieus-Landau instability on premixed turbulent flames. 70th Annual Meeting of the APS Division of Fluid Dynamics, 2017, American Physical Society, Denver.
[36] Patyal A., Matalon M., Nonlinear development of hydrodynamically-unstable flames in three-dimensional laminar flows. Combustion and Flame, 2018, 195: 128–139.