[1] Zhou S., Wang M., Tan H., Wang X., Yang W., Xiong X., Yang F., Evaluation of aluminum ash in alleviating the ash deposition of high-sodium and high-iron coal. Fuel 2020, 273: 117701. DOI: 10.1016/j.fuel.2020.117701.
[2] Li C.Z., Sathe C., Kershaw J.R., Pang Y., Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal. Fuel, 2000, 79: 427–438. DOI: 10.1016/S0016-2361(99)00178-7.
[3] Guo S., Jiang Y., Li J., Yu Z., Zhao J., Fang Y., Correlations between coal compositions and sodium release during steam gasification of sodium-rich coals. Energy & Fuels, 2017, 31: 6025–6033. DOI: 10.1021/acs.energyfuels.7b00674.
[4] Jiang D., Song W., Wang X., Zhu Z., Physicochemical properties of bottom ash obtained from an industrial CFB gasifier. Journal of the Energy Institute, 2021, 95: 1–7. DOI: 10.1016/j.joei.2020.12.004.
[5] Song W., Song G., Qi X., Lu Q., Transformation characteristics of sodium in Zhundong coal under circulating fluidized bed gasification. Fuel, 2016, 182: 660–667. DOI: 10.1016/j.fuel.2016.06.021.
[6] Qi X., Song G., Song W., Yang S., Lu Q., Effects of wall temperature on slagging and ash deposition of Zhundong coal during circulating fluidized bed gasification. Applied Thermal Engineering, 2016, 106: 1127–1135. DOI: 10.1016/j.applthermaleng.2016.06.092.
[7] Song G., Qi X., Song W., Yang S., Lu Q., Nowak W., Slagging behaviors of high alkali Zhundong coal during circulating fluidized bed gasification. Fuel, 2016, 186: 140–149. DOI: 10.1016/j.fuel.2016.08.075.
[8] Guo S., Zhou X., Song S., Mei Y., Zhao J., Fang Y., Optimization of leaching conditions for removing sodium from sodium-rich coals by orthogonal experiments. Fuel, 2017, 208: 499–507. DOI: 10.1016/j.fuel.2017.07.032.
[9] Wei B., Wang X., Tan H., Zhang L., Wang Y., Wang Z., Effect of silicon-aluminum additives on ash fusion and ash mineral conversion of Xinjiang high-sodium coal. Fuel, 2016, 181: 1224–1229. DOI: 10.1016/j.fuel.2016.02.072.
[10] Huang Z., Li Y., Lu D., Zhou Z., Wang Z., Zhou J., Cen K., Improvement of the coal ash slagging tendency by coal washing and additive blending with mullite generation. Energy & Fuels, 2013, 27: 2049–2056. DOI: 10.1021/ef400045y.
[11] Dai B.Q., Wu X., De Girolamo A., Zhang L., Inhibition of lignite ash slagging and fouling upon the use of a silica-based additive in an industrial pulverised coal-fired boiler. Part 1. Changes on the properties of ash deposits along the furnace. Fuel, 2015, 139: 720–732. DOI: 10.1016/j.fuel.2014.06.054.
[12] Li F., Fan H., Fang Y., Investigation on the regulation mechanism of ash fusion characteristics in coal blending. Energy & Fuels, 2016, 31: 379–386. DOI: 10.1021/acs.energyfuels.6b02539.
[13] Liu Y., Wang Z., Lv Y., Wan K., He Y., Xia J., Cen K., Inhibition of sodium release from Zhundong coal via the addition of mineral additives: A combination of online multi-point LIBS and offline experimental measurements. Fuel, 2018, 212: 498–505. DOI: 10.1016/j.fuel.2017.10.081.
[14] Zhu C., Tu H., Bai Y., Ma D., Zhao Y., Evaluation of slagging and fouling characteristics during Zhundong coal co-firing with a Si/Al dominated low rank coal. Fuel, 2019, 254: 115730. DOI: 10.1016/j.fuel.2019.115730.
[15] Kosminski A., Ross D.P., Agnew J.B., Reactions between sodium and silica during gasification of a low-rank coal. Fuel Processing Technology, 2006, 87: 1037–1049. DOI: 10.1016/j.fuproc.2005.06.007.
[16] Kosminski A., Ross D.P., Agnew J.B., Reactions between sodium and kaolin during gasification of a low-rank coal. Fuel Processing Technology, 2006, 87: 1051–1062. DOI: 10.1016/j.fuproc.2005.06.004.
[17] Ruan R., Tan H., Wang X., Li Y., Li S., Hu Z., Wei B., Yang T., Characteristics of fine particulate matter formation during combustion of lignite riched in AAEM (alkali and alkaline earth metals) and sulfur. Fuel, 2018, 211: 206–213. DOI: 10.1016/j.fuel.2017.08.114.
[18] Oleschko H., Schimrosczyk A., Lippert H., Muller M., Influence of coal composition on the release of Na-, K-, Cl-, and S-species during the combustion of brown coal. Fuel, 2007, 86: 2275–2282. DOI: 10.1016/j.fuel.2007.01.030.
[19] Bläsing M., Müller M., Mass spectrometric investigations on the release of inorganic species during gasification and combustion of German hard coals. Combustion and Flame, 2010, 157: 1374–1381. DOI: 10.1016/j.combustflame.2010.01.003.
[20] Guo S., Jiang Y., Yu Z., Zhao J., Fang Y., Correlating the sodium release with coal compositions during combustion of sodium-rich coals. Fuel, 2017, 196: 252–260. DOI: 10.1016/j.fuel.2017.02.004.
[21] Bläsing M., Müller M., Mass spectrometric investigations on the release of inorganic species during gasification and combustion of Rhenish lignite. Fuel, 2010, 89: 2417–2424. DOI: 10.1016/j.fuel.2009.11.042.
[22] Guo S., Jiang Y., Liu T., Zhao J., Huang J., Fang Y., Investigations on interactions between sodium species and coal char by thermogravimetric analysis. Fuel, 2018, 214: 561–568. DOI: 10.1016/j.fuel.2017.11.069.
[23] Thompson D., Argent B.B.J.F., The mobilisation of sodium and potassium during coal combustion and gasification. Fuel, 1999, 78: 1679–1689. DOI: 10.1016/S0016-2361(99)00115-5
[24] Ilyushechkin A.Y., Hla S.S., Chen X., Roberts D.G., Effect of sodium in brown coal ash transformations and slagging behaviour under gasification conditions. Fuel Processing Technology, 2018, 179: 86–98. DOI: 10.1016/j.fuproc.2018.06.017.
[25] Yan T., Kong L., Bai J., Bai Z., Li W., Thermomechanical analysis of coal ash fusion behavior. Chemical Engineering Science, 2016, 147: 74–82. DOI: 10.1016/j.ces.2016.03.016.