[1] Bunker R.S., Gas turbine heat transfer: 10 remaining hot gas path challenges. ASME Turbo Expo: Power for Land, Sea, and Air, Barcelona, Spain, 2006, 4238: 1–14. DOI: 10.1115/GT2006-90002.
[2] Scobie J.A., Sangan C.M., Owen J.M., Lock G.D., Review of ingress in gas turbines. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2016, 138(12): 120801. DOI: 10.1115/1.4033938.
[3] Gao J., Huang J., Du Y., Huo D., Fu W., Advances in rim seal aerodynamic technology for gas turbines. Journal of Aerospace Power, 2021, 36(2): 284–299.
[4] Sangan C.M., Lalwani Y., Owen J.M., Lock G.D., Fluid dynamics of a gas turbine wheel-space with ingestion. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2014, 228(5): 508–524.
[5] Owen J.M., Prediction of ingestion through turbine rim seals—Part I: Rotationally induced ingress. Journal of Turbomachinery: Transactions of the ASME, 2011, 133(3): 031005. DOI: 10.1115/1.4001177.
[6] Owen J.M., Prediction of ingestion through turbine rim seals—Part II: Externally induced and combined ingress. Journal of Turbomachinery: Transactions of the ASME, 2011, 133(3): 031006. DOI: 10.1115/1.4001178.
[7] Owen J.M., Theoretical modeling of hot gas ingestion through turbine rim seals. Propulsion and Power Research, 2012, 1(1): 1–11.
[8] Zhou K., Wood S.N., Owen J.M., Statistical and theoretical models of ingestion through turbine rim seals. Journal of Turbomachinery: Transactions of the ASME, 2013, 135(2): 021014. DOI: 10.1115/1.4006601.
[9] Isobel M.L., Owen J.M., Lock G.D., Theoretical model to determine effect of ingress on turbine disks. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2016, 138(3): 032502.
DOI: 10.1115/1.4031315.
[10] Johnson B.V., Jakoby R., Bohn D.E., Cunat D., A method for estimating the influence of time-dependent vane and blade pressure fields on turbine rim seal ingestion. Journal of Turbomachinery: Transactions of the ASME, 2009, 131(2): 021005. DOI: 10.1115/1.2950053.
[11] Jakoby R., Zierer T., Lindblad K., Larsson J., DeVito L., Bohn D.E., Funcke J., Decker A., Numerical simulation of the unsteady flow field in an axial gas turbine rim seal configuration. ASME Turbo Expo: Power for Land, Sea, and Air, Vienna, Austria, 2004, pp. 431–440. DOI: 10.1115/GT2004-53829.
[12] Gao F., Chew J.W., Beard P.F., Amirante D., Hills N.J., Large-eddy simulation of unsteady turbine rim sealing flows. International Journal of Heat and Fluid Flow, 2018, 70: 160–170.
[13] Gao F., Poujol N., Chew J.W., Beard P.F., Advanced numerical simulation of turbine rim seal flows and consideration for RANS turbulence modeling. ASME Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, Oslo, Norway, 2018, 51098: V05BT15A005. DOI: 10.1115/GT2018-75116.
[14] Gao F., Chew J.W., Marxen O., Inertial waves in turbine rim seal flows. Physical Review Fluids, 2020, 5(2): 024802.
[15] Horwood J.T.M., Computation of flow instabilities in turbine rim seals. The University of Bath, Bath, England, 2019.
[16] Chew J.W., Gao F., Palermo D.M., Flow mechanisms in axial turbine rim sealing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2019, 233(23–24): 7637–7657.
[17] Horwood J.T.M., Hualca F.P., Scobie J.A., Wilson M., Sangan C.M., Lock G.D., Experimental and computational investigation of flow instabilities in turbine rim seals. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2019, 141(1): 011028. DOI: 10.1115/1.4041115.
[18] Pogorelov A., Meinke M., Schroder W., Large-eddy simulation of the unsteady full 3D rim seal flow in a one-stage axial-flow turbine. Flow Turbulence and Combustion, 2019, 102(1): 189–220.
[19] Savov S.S., Atkins N.R., Uchida S., A comparison of single and double lip rim seal geometries. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2017, 139(11): 112601.
DOI: 10.1115/1.4037027.
[20] Horwood J.T.M., Hualca F.P., Wilson M., Scobie J.A., Sangan C.M., Lock G.D., Dahlqvist J., Fridh J., Flow instabilities in gas turbine chute seals. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2019, 142(2): 021019.
DOI: 10.1115/1.4045148.
[21] Cheng S., Li Z., Li J., Investigations on the sealing effectiveness and unsteady flow field of 1.5-stage turbine rim seal. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2019, 141(8): 081003. DOI: 10.1115/1.4042422.
[22] Chilla M., Hodson H., Newman D., Unsteady interaction between annulus and turbine rim seal flows. Journal of Turbomachinery: Transactions of the ASME, 2013, 135(5): 051024. DOI: 10.1115/1.4023016.
[23] Xie L., Du Q., Liu G., Lian Z., Ren R., Investigation of unsteady flow characteristics in axial rim seal. ASME Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, Virtual, Online, 2021, 84980: V05BT14A002. DOI: 10.1115/GT2021-58822.
[24] Xie L., Du Q., Liu G., Lian Z., Liu J., Flow characteristics in turbine wheel space cavity. Energy Reports, 2021, 7: 2262–2275.
[25] Clark K., Barringer M., Johnson D., Thole K., Grover E., Robak C., Effects of purge flow configuration on sealing effectiveness in a rotor-stator cavity. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2018, 140(11): 112502.
DOI: 10.1115/1.4040308.
[26] Scobie J.A., Teuber R., Li Y., Sangan C.M., Wilson M., Lock G.D., Design of an improved turbine rim-seal. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2015, 138(2): 022503. DOI: 10.1115/1.4031241.
[27] Schreiner B.D.J., Wilson M., Li Y., Sangan C.M., Design of contoured turbine endwalls in the presence of purge flow: a feature-based approach. ASME Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, Phoenix, Arizona, USA, 2019, 58561: V02BT40A007. DOI: 10.1115/GT2019-90443.
[28] Li J., Gao Q., Li Z., Feng Z., Numerical investigations on the sealing effectiveness of turbine honeycomb radial rim seal. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2016, 138(10): 102601. DOI: 10.1115/1.4033139.
[29] Wang R., Liu G., Du Q., Lian Z., Xie L., An improved control method of rim seal based on auxiliary sealing holes. GPPS, Beijing, China, 2019, pp. 16–18.
[30] Wang R., Du Q., Liu G., Lian Z., Xie L., Zhu J., Influence of secondary sealing flow on performance of turbine axial rim seals. Journal of Thermal Science, 2020, 29(3): 840–851.
[31] Patinios M., Ong I.L., Scobie J.A., Lock G.D., Sangan C.M., Influence of leakage flows on hot gas ingress. Journal of Engineering for Gas Turbines and Power: Transactions of the ASME, 2019, 141(2): 021010. DOI: 10.1115/1.4040846.
[32] Zlatinov M.B., Tan C.S., Little D., Montgomery M., Effect of purge flow swirl on hot-gas ingestion into turbine rim cavities. Journal of Propulsion and Power, 2016, 32(5): 1055–1066.
[33] Cheng S., Li Z., Li J., Effects of endwall profiling near the blade leading edge on the sealing effectiveness of turbine rim seal. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2019, 233(7): 821–833.
[34] Wu K., Research on the mechanism of sealing and ingestion in gas turbine rotor-stator rim. Tsinghua University, Beijing, China, 2014.
[35] Rabs M., Benra F.K., Dohmen H.J., Schneider O., Investigation of flow instabilities near the rim cavity of a 1.5 stage gas turbine. ASME Turbo Expo: Power for Land, Sea, and Air. Orlando, Florida, USA, 2009, pp. 1263–1272. DOI: 10.1115/GT2009-59965.