[1]
Gerasimov Y.F., Maydanik Y.F., Heat pipe, USSR Inventors Certificate No. 449213, 1974.
[2]
Maydanik Y.F., Loop heat pipes. Applied Thermal Engineering, 2005, 25: 635–657.
[3]
Zhao Y., Yan T., Liang J., Experimental investigation on thermal characteristics of long distance loop heat pipes. Journal of Thermal Science, 2022, 31(3): 741–750.
[4]
Bugby D., Marland B., Stouffer C., et al., Development of advanced tools for cryogenic integration. Advances in Cryogenic Engineering: Transactions of the Cryogenic Engineering Conference, 2004, 49: 1914–1922.
[5]
Karunanithi R., Jacob S., Narasimham G.S.V.L., et al., Development of cryogenic loop heat pipe. AIP Conference Proceedings, 2008, 985: 393–400.
[6]
Hoang T.T., O’Connell T.A., Ku J., et al., Large area cryocooling for far infrared telescopes. Proceedings of SPIE, 2003, 5172: 77–85.
[7]
Hoang T.T., O’Connell T.A., Suhkov D.A., Large area cooling with cryogenic loop heat pipes. AIAA Paper, No. 2007-4272, 2007.
[8]
Khrustalev D., Cryogenic loop heat pipes as flexible thermal links for cryocoolers, In: Ross, R.G. (eds) Cryocoolers 12. Springer, Boston, MA, 2003, pp. 709–716. DOI: 10.1007/0-306-47919-2_93.
[9]
Khrustalev D., Test data for a cryogenic loop heat pipe operating in the temperature range from 65 K to 140 K. Presentation at the International Two-Phase Thermal Control Technology Workshop, Mitcheville, MD, USA, September 24–26, 2002.
[10]
Khrustalev D., Semenov S., Advances in low-temperature, cryogenic, and miniature loop heat pipes. Presentation at the 12th Annual Spacecraft Thermal Control Technology Workshop, El Segundo, March 2003.
[11]
Mo Q., Liang J., A novel design and experimental study of a cryogenic loop heat pipe with high heat transfer capability. International Journal of Heat Mass Transfer, 2006, 49: 770–776.
[12]
Mo Q., Liang J., Operational performance of a cryogenic loop heat pipe with insufficient working fluid inventory. International Journal of Refrigeration, 2006, 29: 519–527.
[13]
Mo Q., Liang J., Cai J., Investigation of the effects of three key parameters on the heat transfer capability of a CLHP. Cryogenics, 2007, 47: 262–266.
[14]
Hoang T.T., O’Connell T.A., Ku J., et al., Performance demonstration of a hydrogen advanced loop heat pipe for 20–30 K cryocooling of far infrared sensors. Proceedings of SPIE 2005.
[15]
Hoang T.T., O’Connell T.A., Khrustalev D., Development of a flexible advanced loop heat pipe for across-gimbal cryocooling. Proceedings of SPIE, 2003, 5172: 68–76.
[16]
Hoang T.T., O’Connell T.A., Performance demonstration of flexible advanced loop heat pipe for Across-Gimbal Cryocooling. 3rd International Energy Conversion Engineering Conference, San Francisco, USA, August 2005. DOI: 10.2514/6.2005-5590.
[17]
Bugby D., Marland B., Stouffer C., et al., Advanced components for cryogenic integration. Ross R.G. (eds) Cryocoolers 12, Springer, Boston, MA, 2003, pp. 693–708. DOI: 10.1007/0-306-47919-2_92.
[18]
Gully P., Mo Q., Seyfert P., et al., Nitrogen cryogenic loop heat pipe: results of a first prototype. Proceedings of 15th International cryocooler conference, 2008, pp. 525–531.
[19]
Gully P., Yan T., Thermal management of nitrogen cryogenic loop heat pipe. AIP Conference Proceedings, 2010, 1218: 1173–1180.
[20]
Gully P., Mo Q., Yan T., et al., Thermal behavior of a cryogenic loop heat pipe for space application. Cryogenics, 2011, 51: 420–428.
[21]
Bai L., Lin G., Zhang H., et al., Operating characteristics of a miniature cryogenic loop heat pipe. International Journal of Heat Mass Transfer, 2012, 55: 8093–8099.
[22]
Bai L., Zhang L., Lin G., et al., Development of cryogenic loop heat pipes: a review and comparative analysis. Applied Thermal Engineering, 2015, 89: 180–191.
[23]
Du C., Bai L., Lin G., et al., Determination of charged pressure of working fluid and its effect on the operation of a miniature CLHP. International Journal of Heat Mass Transfer, 2013, 63: 454–462.
[24]
Guo Y., Lin G., Bai L., et al., Experimental study on the supercritical startup of cryogenic loop heat pipes with redundancy design. Energy Conversion and Management, 2016, 118: 353–363.
[25]
Guo Y., Lin G., He J., et al., Experimental study of the thermal performance of a neon cryogenic loop heat pipe. International Journal of Heat Mass Transfer, 2018, 120: 1266–1274.
[26]
Guo Y., Lin G., He J., et al., Experimental analysis of operation failure for a neon cryogenic loop heat pipe. International Journal of Heat Mass Transfer, 2019, 138: 96–108.
[27]
Qu Z., Chen G., Zhou L., Miao J., Numerical study on the operating characteristics of cryogenic loop heat pipes based on a one-dimensional heat leak model. Energy Conversion and Management, 2018, 172: 485–496.
[28]
Zhao Y., Yan T., Liang J., Experimental study on a cryogenic loop heat pipe with high heat capacity. International Journal of Heat Mass Transfer, 2011, 54: 3304–3308.
[29]
Yan T., Zhao Y., Liang J., et al., Investigation on optimal working fluid inventory of a cryogenic loop heat pipe. International Journal of Heat Mass Transfer, 2013, 66: 334–337.
[30]
Zhao Y., Yan T., Liang J., et al., A new way of supercritical startup of a cryogenic loop heat pipe. International Journal of Heat Mass Transfer, 2019, 145: 118793.
[31]
Guo Y., Lin G., He J., et al., Experimental study on the supercritical startup and heat transport capability of a neon-charged cryogenic loop heat pipe. Energy Conversion and Management, 2017, 134: 178–187.
[32]
Guo Y., Lin G., He J., et al., Supercritical startup strategy of cryogenic loop heat pipe with different working fluids. Applied Thermal Engineering, 2019, 155: 267–276.
[33]
Zhao Y., Yan T., Liang J., Effect of shroud temperature on performance of a cryogenic loop heat pipe. AIP Conference Proceedings, 2012, 1434: 409–416.