[1] Mahlia T., Saktisahdan T., Jannifar A., et al., A review of available methods and development on energy storage; technology update. Renewable and Sustainable Energy Reviews, 2014, 33: 532–545.
[2] Rogelj J., Den Elzen M., Höhne N., et al., Paris Agreement climate proposals need a boost to keep warming well below 2°C. Nature, 2016, 534(7609): 631–639.
[3] Salvia M., Reckien D., Pietrapertosa F., et al., Will climate mitigation ambitions lead to carbon neutrality? An analysis of the local-level plans of 327 cities in the EU. Renewable and Sustainable Energy Reviews, 2021, 135: 110253.
[4] Bennett J.A., Fuhrman J., Brown T., et al., Feasibility of using sCO2 turbines to balance load in power grids with a high deployment of solar generation. Energy, 2019, 181: 548–560.
[5] Zhou Q., Du D., Lu C., et al., A review of thermal energy storage in compressed air energy storage system. Energy, 2019, 188: 115993.
[6] Lund H., Werner S., Wiltshire R., et al., 4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems. Energy, 2014, 68: 1–11.
[7] Luo X., Wang J., Dooner M., et al., Overview of current development in electrical energy storage technologies and the application potential in power system operation. Applied Energy, 2015, 137: 511–536.
[8] Jiang R., Yin H., Yang M., et al., Thermodynamic model development and performance analysis of a novel combined cooling, heating and power system integrated with trigenerative compressed air energy storage. Energy Conversion and Management, 2018, 168: 49–59.
[9] Houssainy S., Janbozorgi M., Kavehpour P. Theoretical performance limits of an isobaric hybrid compressed air energy storage system. Journal of Energy Resources Technology, 2018, 140(10): 101201.
[10] Shengwei M., Rui L., Laijun C., et al., An overview and outlook on advanced adiabatic compressed air energy storage technique. Proceedings of the CSEE, 2018, 38(10): 2893–2907, 3140.
[11] Hameer S., Van Niekerk J.L., A review of large-scale electrical energy storage. International Journal of Energy Research, 2015, 39(9): 1179–1195.
[12] Ibrahim H., Ilinca A., Perron J., Energy storage systems—Characteristics and comparisons. Renewable and Sustainable Energy Reviews, 2008, 12(5): 1221–1250.
[13] Zheng J., Chen R., Li L., et al., Multifunctional multi-layered stationary hydrogen storage vessels. Pressure Vessel Technology, 2005, 12: 25–28.
[14] Zheng J., Liu X., Xu P., et al., Development of high pressure gaseous hydrogen storage technologies. International Journal of Hydrogen Energy, 2012, 37(1): 1048–1057.
[15] Zheng J., Liu X., Xu P., et al., Stationary flat steel ribbon wound vessels for storage of high pressure hydrogen. American Society of Mechanical Engineers, 2012, 55003: 565–569.
[16] Gouda E.M., Fan Y., Benaouicha M., et al., Review on liquid piston technology for compressed air energy storage. Journal of Energy Storage, 2021, 43: 103111.
[17] Van De Ven J.D., Li P.Y., Liquid piston gas compression. Applied Energy, 2009, 86(10): 2183–2191.
[18] Neu T., Solliec C., Dos Santos Piccoli B., Experimental study of convective heat transfer during liquid piston compressions applied to near isothermal underwater compressed-air energy storage. Journal of Energy Storage, 2020, 32: 101827.
[19] Maisonnave O., Moreau L., Aubrée R., et al., Optimal energy management of an underwater compressed air energy storage station using pumping systems. Energy Conversion and Management, 2018, 165: 771–782.
[20] Patil V.C., Ro P.I., Modeling of liquid-piston based design for isothermal ocean compressed air energy storage system. Journal of Energy Storage, 2020, 31: 101449.
[21] Qin C., Loth E., Liquid piston compression efficiency with droplet heat transfer. Applied Energy, 2014, 114: 539–550.
[22] Guanwei J., Weiqing X., Maolin C., et al., Micron-sized water spray-cooled quasi-isothermal compression for compressed air energy storage. Experimental Thermal and Fluid Science, 2018, 96: 470–481.
[23] Weiqing X., Ziyue D., Xiaoshuang W., et al., Isothermal piston gas compression for compressed air energy storage. International Journal of Heat and Mass Transfer, 2020, 155: 119779.
[24] Yunus A.C., Heat transfer: a practical approach. WBC McGraw-Hill, 1998.
[25] Sieder E.N., Tate G.E., Heat transfer and pressure drop of liquids in tubes. Industrial & Engineering Chemistry, 1936, 28(12): 1429–1435.
[26] Wong H., Handbook of essential formulae and data on heat transfer for engineers. Addison-Wesley Longman Limited, London, 1977, pp. 100–251.
[27] Žukauskas A., Heat transfer from tubes in crossflow. Vilnius, USSR: Academy of Sciences of the Lithuanian SSR, 1972, 8: 93–158.
[28] Worster R., Denny D., Hydraulic transport of solid material in pipes. Proceedings of the Institution of Mechanical Engineers, 1955, 169(1): 563–586.
[29] Munson B.R., Young D.F., Okiishi T.H., Fundamentals of fluid mechanics. Oceanographic Literature Review, 1995, 10(42): 831.
[30] Roland W.J., Analysis of flow in pipe networks. Ann Arbor Science Publishers, Michigan, 1982, pp. 54– 149.
[31] Yan B., Wieberdink J., Shirazi F., et al., Experimental study of heat transfer enhancement in a liquid piston compressor/expander using porous media inserts. Applied Energy, 2015, 154: 40–50.
[32] Wieberdink J., Li P.Y., Simon T.W., et al., Effects of porous media insert on the efficiency and power density of a high pressure (210 bar) liquid piston air compressor/expander–An experimental study. Applied Energy, 2018, 212: 1025–1037.
[33] Kermani N.A., Petrushina I., Rokni M.M., Evaluation of ionic liquids as replacements for the solid piston in conventional hydrogen reciprocating compressors: A review. International Journal of Hydrogen Energy, 2020, 45(33): 16337–16354.